Distance Distribution of Trees

Peter Dankelmann, University of KwaZulu-Natal

Let T be a tree of order n and k a non-negative integer. We determine best possible upper and lower bounds on $D_k(T)$, the number of pairs of vertices at distance exactly k in T. We show that for odd k,

$$D_k(T) \leq \left\lfloor \frac{n - k + 1}{2} \right\rfloor \left\lceil \frac{n - k + 1}{2} \right\rceil,$$

and for even k

$$D_k(T) \leq \begin{cases}
\binom{n-1}{2} & \text{if } k = 2, \\
\frac{1}{2}n^2 - \sqrt{k - 2n^{3/2}} + O(n) & \text{if } k \geq 4,
\end{cases}$$

We also give bounds on $D_k(T)$ in terms of order and radius or diameter.

Keywords: distance, diameter, radius, tree