Improved Sliding Shortest Path Algorithm: Performance Analysis
Henry Carter*, Georgia Tech, Ramesh Bhandari, Laboratory for Telecommunications Sciences

Given an undirected, weighted graph, and a pair of vertices s and t, connected by the shortest path, and an edge pq not lying on the shortest path, what is the minimal change required in the given graph to cause the shortest path between s and t to pass through edge pq? This is a type of a problem often faced by network administrators in the telecommunication world. Unfortunately, the problem is NP-hard and one resorts to heuristics. Recently, a heuristic called the Improved Sliding Shortest Path Algorithm was presented as an improvement of an earlier heuristic. In this paper, we provide a detailed numerical comparison of the two algorithms and demonstrate the superiority of the improved version via applications to real-life networks.

Keywords: shortest path, algorithm, weighted graph, undirected, sliding, constrained, rerouting, network, optimization, performance analysis, minimal edge weight changes.