The distinguishing chromatic numbers of triangulations on the projective plane

Terukazu Sano, Yokohama National University

A simple graph G is d-distinguishing colorable if there exists a vertex coloring $c : V(G) \rightarrow \{1, 2, \ldots, d\}$ such that no automorphism, other than the identity map id_G, preserves the vertex coloring c. It is trivial that any graph G is $|V(G)|$-distinguishing colorable. We shall define the distinguishing chromatic number of G as the minimum value d such that G is d-distingiuishing colorable, and denote it by $\chi_D(G)$. It is a natural question whether there exists an upper bound for the distinguishing chromatic numbers of planar graphs. However, the answer is “No” in general since $\chi_D(K_{1,t}) = 1 + t$ for any star graph $K_{1,t}$ and $\chi_D(K_{2,t}) = 2 + t$ for any complete bipartite graph $K_{2,t}$. Negami has established a positive answer to the question for 3-connected planar graphs, which states that every 3-connected planar graph is 6-distinguishing colorable. In our talk, we shall prove that every triangulation on the projective plane is 7-distinguishing colorable.

Keywords: distinguishing chromatic number, triangulations, projective plane