A Particular Class of $1, M, N$-Antiautomorphisms of Directed Triple Systems

Neil P. Carnes, Anne Dye, Stanley Parkerson, Kristen Stewart, McNeese State University

A transitive triple, (a, b, c), is defined to be the set $\{(a, b), (b, c), (a, c)\}$ of ordered pairs. A directed triple system of order v, DTS(v), is a pair (D, β), where D is a set of v points and β is a collection of transitive triples of pairwise distinct points of D such that any ordered pair of distinct points of D is contained in precisely one transitive triple of β. An antiautomorphism of a directed triple system, (D, β), is a permutation of D which maps β to β^{-1}, where $\beta^{-1} = \{(c, b, a) | (a, b, c) \in \beta\}$. In this paper we give sufficient conditions for the existence of a directed triple system of order v admitting an antiautomorphism consisting of three cycles of lengths 1, M, and N, where $M \equiv 8 \pmod{24}$ and $N > 2M$.

Keywords: antiautomorphism, tricyclic, directed triple system