The 3-colored Ramsey Number of Even Cycles

Fabricio Siqueira Benevides*, Memphis, Memphis University, and Jozef Skokan, London School of Economics.

Denote by $R(L, L, L)$ the minimum integer N such that any 3-coloring of the edges of the complete graph with N vertices K_N contains a monochromatic copy of a graph L. Bondy and Erdős conjectured that for an odd n-cycle C_n, $R(C_n, C_n, C_n) = 4n - 3$ for $n > 3$. This is sharp if true. Luczak proved that if n is odd, then $R(C_n, C_n, C_n) = 4n + o(n)$, as $n \to \infty$. Kohayakawa, Simonovits and Skokan proved that the exact Bondy-Erdős conjecture holds for sufficiently large values of n. Figaj and Luczak determined an assintotic result for the ‘complementary’ case where the cycles are even: they showed that for n even $R(C_n, C_n, C_n) = 2n + o(n)$ (Actually their result is much stronger than that because the cycles may be of slightly different sizes). Now we prove that there is n_0 such that for $n \geq n_0$ even $R(C_n, C_n, C_n) = 2n$.

Keywords: Ramsey, Cycles, Regularity