Semiorders and Riordan Numbers
Barry Balof and Jacob Menashe*, Whitman College

Semiorders, or unit interval orders, get their genesis in mathematical psychology but are more formally studied in ordered set theory. It is a classic combinatorial result that the number of semiorders on an n element set is the nth Catalan number, C_n. In our talk we are looking at a special class of these semiorders, those for which no two elements share the same predecessor and successor sets and each element is incomparable with its predecessor in the underlying linear order. We call semiorders with these properties ‘interesting semiorders’. We also examine the set of Motzkin Paths, which are generalizations of Catalan Paths (these are Catalan Paths which allow horizontal as well as up- and down- steps). In our talk, we exhibit both an enumerative proof as well as a bijection between interesting semiorders and those Motzkin Paths which have no horizontal steps on the x-axis. Both of these sets are counted by the Riordan Numbers, which are a cousin to the Catalan Numbers.

Keywords: Semiorders, Catalan Paths, Motzkin Paths, Riordan Numbers