Degree bounded factorizations of pseudographs

A.J.W. Hilton (Reading University and Queen Mary University of London)

For \(d \geq 1, s \geq 0 \) a \((d, d+s)\)-graph is a graph whose degrees all lie in the interval \(\{d, d+1, \ldots, d+s\} \). For \(r \geq 1, a \geq 0 \) an \((r, r+a)\)-factor of a graph \(G \) is a spanning \((r, r+a)\)-subgraph of \(G \). An \((r, r+a)\)-factorization of a graph \(G \) is a decomposition of \(G \) into edge-disjoint \((r, r+a)\)-factors.

We prove a number of results about \((r, r+a)\)-factorizations of \((d, d+s)\)-pseudographs (multigraphs with loops permitted). For example, for \(t \geq 1 \) let \(\pi(r, s, a, t) \) be the least integer such that, if \(d \geq \pi(r, s, a, t) \) then every \((d, d+s)\)-pseudograph \(G \) has an \((r, r+a)\)-factorization into \(x \) \((r, r+a)\)-factors for at least \(t \) different values of \(x \). Then we show that, if \(r \) and \(a \) are even, then

\[
\pi(r, s, a, t) = r \left\lceil \frac{tr + s - 1}{a} \right\rceil + (t - 1)r .
\]

We use this to give bounds for \(\pi(r, s, a, t) \) when \(r \) and \(a \) are not both even. Finally we consider the corresponding functions for multigraphs without loops, and for simple graphs.

KEYWORDS. \([a, b]\)-factorizations, semiregular factorizations, pseudographs.