A vertex-magic total labeling (VMTL) of a graph is an assignment of the consecutive integers 1, 2, 3… to the vertices and edges of the graph, so that the sum of a vertex label and all labels on its incident edges is a constant not dependent on the choice of vertex. We show that the graph consisting of m disjoint copies of the complete graph with n vertices has a VMTL for any positive integer m, and any odd integer $n>3$. We present some partial results for the case $n=3$. In particular, we provide a succinct argument that there is no VMTL for the case $m=2$ and $n=3$. The case where $n>2$ is even and m arbitrary was dealt with by a more general result of Wallis.

Key Words: magic graphs, magic labeling, multiple complete graphs