Cycle domination, independence, and irredundance in Graphs

Amy Grady, Fiona Knoll, Renu Laskar, Drew J. Lipman*, Clemson University

A set S of vertices in a graph $G = (V, E)$ is called cycle independent if the induced subgraph $G[S]$ is acyclic. A set S is cycle dominating if for every vertex $u \in V \setminus S$ there exists a vertex $v \in S$ such that u and v are contained in a cycle in $G[S \cup \{u\}]$. A set S is cycle irredundent if for every vertex $v \in S$ there exists a vertex $u \in V \setminus S$ such that u and v are in a cycle of $G[S \cup \{u\}]$, but u is not in a cycle of $G[S \cup \{u\} \setminus \{v\}]$. In this talk we present, and investigate, these new concepts, which generalizes in a natural way the concepts of independence, domination and irredundance in graphs.

Keywords: domination, independence, irredundance