On Chromatic Connection in Graphs

Elliot Laforge*, Western Michigan University

Let G be an edge-colored connected graph. A path P is a proper path in G if no two adjacent edges of P are colored the same. If P is a proper $u - v$ path of length $d(u,v)$, then P is a proper $u - v$ geodesic. An edge coloring c is a proper-path coloring of a connected graph G if every pair u,v of distinct vertices of G are connected by a proper $u - v$ path in G, while c is a strong proper coloring if every two vertices u and v are connected by a proper $u - v$ geodesic in G. The minimum number of colors required for a proper-path coloring and strong proper coloring of G is called the proper connection number and strong connection number of G, respectively. These concepts were inspired by the well-studied concepts of rainbow colorings and strong rainbow colorings of a connected graph. We investigate relationships among these four edge colorings as well as the well-known proper edge colorings of graphs and the chromatic index of a graph. Furthermore, new results and open questions are presented in this area of research.

Keywords: proper path and geodesic, chromatic connection.