Group divisible designs with blocksize 3 and 5 groups.

Donald Kreher*, Michigan Technological University

A group divisible design with block size three (GDD) is a triple (X, G, B), where X is a set of points, G is a partition of X into subsets called groups and B is a set of 3-element subsets of X (called triples) such that every pair of points is either in a triple or a group but not both. If there are n_i groups of size g_i, $i = 1, 2, \ldots, r$ we say that the type of the GDD is $g_1^{n_1}g_2^{n_2}g_3^{n_3}\cdots g_r^{n_r}$ and denote such a design by $3-GDD(g_1^{n_1}g_2^{n_2}g_3^{n_3}\cdots g_r^{n_r})$. They are equivalent to a K_3-decomposition of the complete multipartite graph whose partite sets are the groups.

In this talk we show that a $3-GDD(g^3u^2)$s exist if and only if g and u have the same parity and $3|u$.

This is joint work with Charles Colbourn and Melissa Keranen.

Keywords: group divisible design, graph decomposition, GDD