Domination in graphs has been popular for decades and sports a large following. From the graph-based domination grew domination graphs, based upon the idea of domination between vertices in a digraph. In the spirit of the initial link between domination and domination graphs, in 2010, Factor and Langley extended the idea of \((i,j)\)-domination in graphs (Hedetniemi et al.) to \((i,j)\)-domination graphs. Given a digraph \(D\), the \((i,j)\)-domination graph of \(D\), \(dom_{i,j}(D)\), has the same vertex set as \(D\) with edge \(uv\) if for every vertex \(z\) in \(V(D) - \{u, v\}\), \(u\) reaches \(z\) in at most \(i\) steps and \(v\) reaches \(z\) in at most \(j\) steps. Results have been found for tournaments with specific values of \(i\) and \(j\). Here, we explore the minimum values of \(i\) and \(j\) for strong regular and near-regular tournaments that will create connected and/or complete \((i,j)\)-domination graphs.