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ON THE ORIGINAL MALFATTI PROBLEM
MICHAEL GOLDBERG, Washington, D. C.

1. Introduction. In 1803, Malfatti (1737-1807), of the University of Ferrara,
proposed the following problem [1]:

Given a right triangular prism of any sort of material, such as marble, how shall
three circular cylinders of the same height as the prism and of the greatest possible
volume be related to one another in the prism and leave over the least possible amount
of material?

This reduces to the plane problem of cutting three circles from a given tri-
angle so that the sum of their areas is maximized.

Malfatti, and many others who considered the problem, assumed that the
solution would be the three circles which are tangent to each other, while each
circle is tangent to two sides of the triangle, as in Figure la. These circles have
become known as the Malfatti circles. The construction of the Malfatti circles,
and the derivation of their sizes, have been the subject of many elegant papers.
A brief history of these is given by Eves [2], and a more extensive history is
given by Lob and Richmond [3]. The solution by Schellbach is given by
Dérrie [4].

(a) (b)

(c) (d)

FiG. 1. Arrangements of circles.

It was not until 1929 that Lob and Richmond [3] noted that the Malfatti
circles were not always the solution of the original Malfatti problem. In a brief
note at the end of their paper, they remarked that for an equilateral triangle, the
inscribed circle, with two little circles squeezed into the angles, contain a
greater area than Malfatti’s three circles. Eves [2] indicates that for very tall
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triangles, three circles placed one above the other can have a combined area
greater than that of the Malfatti circles. It is the purpose of this note to show
that the Malfatti circles are never the solution of the original Malfatti problem.

2. Cirles tangent to a line. A maximum area is not reached unless each circle
is restrained from growing by making at least three contacts, either with the
sides of the triangle or with other circles. These contacts must be distributed
along the circumference so that they do not all lie within a semicircle; otherwise,
the circle would not be in static equilibrium and could be enlarged by some
adjustment. The Malfatti circles meet this condition and give a local maximum.
However, other arrangements also meet this condition. The Malfatti arrange-
ment is the only one in which each side touches only two circles, as shown in
Figure la. In the other arrangements, the three circles touch the same side of
the triangle. There are three such arrangements, shown in Figures 1b, 1c, and
1d. The middle circle may be the largest, the smallest, or the median circle. The
case in which the smallest circle is in the middle, as shown in Figure 1b, can be
improved by placing the smallest circle in the opposite angle where it can be
larger, as shown in Figure 1a. The dotted line in Figure 1b is the other tangent
to the two larger circles. By symmetry, the dotted circle is the same size as the
smallest circle. However, by removing the constraint of the dotted line, the
dotted circle can grow until it becomes the dashed circle when it touches one of
the sides of the triangle. Each of the other cases may be best, depending upon
the angles of the given triangle.

3. The Lob-Richmond-Goldberg construction (LRG). The following con-
struction always yields a larger area than the Malfatti circles. First inscribe a
circle in the given triangle. Then inscribe the second circle in the smallest angle
and tangent to the first circle. The third circle may be inscribed in the same angle
or in the next larger angle—whichever permits the larger circle. There are equiv-
ocal cases in which the two have the same area.

4, The radii of the Malfatti circles. The given triangles may have all possible
shapes. Let us assume that they all have an inscribed circle of unit radius. Then,
if the radii of the Malfatti circles are designated by 71, 73, 73, it is shown by Lob
and Richmond [3, p. 302] that

n=04+214+ w»)/21 + ), ro= 0421 + u)/2(1 + v),
rs= 14+ u){1 + v)/2(1 + w),

where u=tan 4 /4, v=tan B/4, w=tan C/4, and 4, B, C are the angles of the
triangle.

If we maximize the sum of the squares of the radii, then this is
equivalent to maximizing the area. For the Malfatti circles, let M=ri+r2+73.
Since tan (4/4+B/4+4C/4)=tan w/4=1, we have (u+v+w—uvw)/
(1—vw—uw—uv)=1, from which w= {1 —uv)— (u+v) }/{ (1 —uv) + (u+v) }
and 14+w=2(1—uv)/ { (1 —uv)+ (u+v) } By means of this equation, the vari-
able w can be eliminated, leaving M as a function of only % and v, namely:
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M=_04 21+ )21 4+ %+ v — ur)2/16(1 — uv)?
+ (1 — w1+ w4+ A+ 94/ + w21+ 921 + u + v — uo)?.

5. The radii of the LRG circles. The first circle has unit radius. Let the small-
est angle be called 4, and the next larger angle (or equal) be called B. Then,
the radius of the second circle is given by 7= (1—sin 4/2)/(1+sin 4/2). If
tan A/4=u, then, since sin 4/2=(2 tan A/4)/(1+tan? A/4)=2u/(1+u?),
we have

rn={1-w/0+u},
ry = {(1 -2/ + 'v)}z, if the third circle is in B, (Case 1).
or

rs = {(1 — u)/(1 + w)}¢, if the third circleis in 4, (Case 2).

Hence, LRG(Q)=r+r+r2=1+{1—u)/A+u)}*+{(1—-v)/Q1+v)}4, and
LRG(2) =1+ {(1 —u)/(1+u) }+ {1 —u) /(1 +u) } 2.

6. The case of the equilateral triangle. The problem for the special case of
the equilateral triangle has been extended by Procissi [5]. He inscribed a circle
of radius ¥ in one angle of an equilateral triangle of edge 2 and two circles of
radius «x in the other two angles, making the circles of radius x tangent to the
circle of radius y. Then the relation between x and v is given by

y={2v3 — 2 — V8x(~/3 — 2)}/3.

If S is the sum of the areas of the circles, then in Procissi’s notation, F(x)
=9S/m=9(2x2+9y?). The graph of the function F(x) is shown in Figure 2. The
curve has a horizontal tangent near x=0.27. At this point, the function has the
minimum value of. 3.320.

The Malfatti circles are given by x=y=(1/3—1)/2=0.366 for which
F(x)=3.618. The LRG circles are given by x=+/3/9=0.192, then y+/3/3
=0.577, and F(x)=3.667. Each of these two values of F(x) is a “corner maxi-
mum?” since the slopes of the curve at these points are not zero.

For x<0.192, the circle of radius y protrudes outside of the triangle, and for
x>0.366, the circles of radius x will overlap. Both of these cases are not admissi-
ble by the geometric conditions of the problem.

7. The general triangle. If a circle of radius x is inscribed in one angle of a
given triangle and then circles of radii ¥ and 2z are inscribed in the other angles,
making the circles of radii ¥ and z tangent to the circle of radius x, then y and 2
are expressible as functions of x. Therefore S is a function of x, say F(x) =9S/m.
This function is similar to the function for the equilateral triangle; namely, it
will have a minimum for some value of x, and two “corner maxima,” one of
which corresponds to the Malfatti circles and the other to three circles tangent
to one side. In general, these curves can be made in three ways, depending upon
the choice of the angle in which the circle of radius x is inscribed. It will be
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shown that there is always a choice which makes the Malfatti sum the smaller
of the two maxima.

8. Graphical demonstration of the nature of the surfaces. A rigorous alge-
braic proof of the greater values of the LRG sums over the M sums could be-
come quite involved. It is proposed, therefore, to compute and describe the
surfaces which represent the LRG and M sums as functions of the variables
A4, B, and C. Since 4+ B+ C=m, we can indicate a triangle of angles 4, B, and
C as a point P in an equilateral triangle of height = (Figure 3). Then, the dis-
tances of the point from the sides of the triangle are 4, B, and C. The continuous
one-parameter family of isosceles triangles is represented by a median of the
equilateral triangle. The values of LRG and M were computed for these isosceles
triangles and are shown on the graph of Figure 4. Figure 5 shows the values for
A =0, and B+ C=180°. Figure 6 shows the values for 4 =60° and B4 C=120°.
Figure 7 shows the values for 4 =120° and B4 C=60°. The curves on these
graphs correspond to the sections of the surfaces cut by the planes indicated by
the lines of Figure 3.

The M surface resembles a paraboloid of revolution. The LRG surface can
be approximated by a segment of a paraboloid of revolution which has been
deformed so that the circle at the top edge has been distorted into an equilateral
triangle.
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Fi1G. 4. Isosceles triangles, B=C.
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For both surfaces, the lowest point occurs at (4, B, C)=(60° 60°, 60°).
The axis of the surfaces is a vertical line through this point. A plane passing
through this axis cuts the surfaces in two curves. One case is shown in Figure 4.
Another case is shown in Figure 6. For other directions, an interpolated pair of
curves is obtained. From the nature of the functions from which the surfaces
are computed the curves are well behaved; they are continuous and have con-
tinuously increasing first derivatives. The surfaces made from these curves are,
similarly, well behaved.

For each section through the axis, the curves have horizontal tangents at
the axis. The ordinate of the lowest point of the M surface is 9(2—+/3)/2
=1.206. The ordinate of the lowest point of the LRG surface is slightly greater,
namely, 11/9=1.222. As we move away from the axis, the ordinates increase
monotonically. The rate of increase on the LRG surface is always greater than
the rate of increase on the M surface. Hence, over any point of the base triangle,
the ordinate of the LRG surface is always greater than the ordinate of the M
surface. This is evident from the numerical computation and graphing of the
curves. A rigorous demonstration of this fact would be desirable, but it has not
yet been developed.
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Throughout this note Greek letters @, 8, - - -

denote real numbers, Roman
letters a, b, - - -

denote positive real numbers, and capital Roman letters



