Number Theory 2

Paul Yiu

Department of Mathematics
Florida Atlantic University

Spring 2007
April 8, 2007
Contents

1 Preliminaries 101
 1.1 Infinitude of prime numbers 101
 1.2 Euclidean algorithm and linear Diophantine equations . 101
 1.2.1 Euclidean Algorithm 101
 1.3 The greatest common divisor 102
 1.3.1 \(\gcd(a, b) \) as an integer combination of \(a \) and \(b \). . 103
 1.3.2 Linear Diophantine equations 103
 1.4 Chinese remainder theorem 104
 1.5 Fermat’s little theorem and the Euler \(\phi \)-function . . 104
 1.6 Some number theoretic functions 105

2 Pythagorean triangles 201
 2.1 Construction of Pythagorean triangles 201
 2.2 Primitive Pythagorean triangles with consecutive legs . 202
 2.3 Fermat Last Theorem for \(n = 4 \) 204
 2.4 Nonexistence of a pair of Pythagorean triangles with legs \(a, b, \) and \(a, 2b \) . 206
 2.5 Impossibility of 4 squares in arithmetic progression . . 207

3 Homogeneous quadratic equations in 3 variables 213
 3.1 Pythagorean triangles revisited 213
 3.2 Rational points on a conic 214

4 Integer triangles with a 60° or 120° angle 215
 4.1 Integer triangles with a 60° angle 215
 4.2 Integer triangles with a 120° angle 217
 4.3 A pair of discordant forms: \(x^2 \pm xy + y^2 \) 219
5 Heron triangles 221
5.1 The Heron formula .. 221
5.2 Heron triangles ... 222
5.3 Construction of Heron triangles 223
5.4 Heron triangles with sides in arithmetic progression . 224
5.5 Heron triangles with integer inradii 225
5.6 Impossibility of a Heron triangle with one side twice another .. 226
6 Sums of two and four squares 301
6.1 Euler’s proof of Fermat’s two-square theorem 301
6.2 Representation of integers as sums of two squares ... 302
6.3 Lagrange’s proof of the four-square theorem 303
 6.3.1 Descent .. 303
7 Finite continued fractions 305
7.1 Euler’s function for the convergents of a continued fraction .. 305
7.2 Cornacchia’s algorithm for a prime as a sum of two squares3 07
8 Quadratic Residues 401
8.1 The Legendre symbol 403
8.2 The law of quadratic reciprocity 406
8.3 Calculation of square roots modulo p 409
8.4 Square roots modulo an odd prime power 411
8.5 Square modulo 2^k 412
9 The ring of Gaussian integers 501
9.1 The ring $\mathbb{Z}[i]$ 501
 9.1.1 Norm and units 501
 9.1.2 Gaussian primes 501
9.2 An alternative proof of Fermat’s two-square theorem . 503
10 Construction of indecomposable Heron triangles 505
10.1 Primitive Heron triangles 505
 10.1.1 Rational triangles 505
 10.1.2 Triple of simplifying factors 506
 10.1.3 Decomposition of Heron triangles 507
10.2 Gaussian integers 508
 10.2.1 Heron triangles and Gaussian integers 509
10.3 Orthocentric Quadrangles .. 511
10.4 Indecomposable primitive Heron triangles 512
 10.4.1 Construction of Heron triangles with given simplifying factors .. 513

11 Infinite continued fractions 601
11.1 Lagrange’s Theorem ... 604
 11.1.1 Purely periodic continued fractions 604
 11.1.2 Eventually periodic continued fractions 604
 11.1.3 Reduced quadratic irrationalities 605
 11.1.4 Proof of Lagrange’s theorem 606

12 The Pell Equation ... 609
12.1 The equation $x^2 - dy^2 = 1$ 609
 12.1.1 ... 611
12.2 The equation $x^2 - dy^2 = -1$ 612
12.3 The equation $x^2 - dy^2 = c$ 612
12.4 Applications .. 614

13 Elliptic Curves ... 701
13.1 Group law on $y^2 = x^3 + ax^2 + bx + c$ 701
13.2 The discriminant .. 702

14 Heron triangles and Elliptic Curves 705
14.1 The elliptic curve $y^2 = (x - k)^2 - 4kx^3$ 705
 14.1.1 Proof of Theorem 14.1 708
 14.1.2 Theorem 11.4 ... 904
Chapter 1

Preliminaries

1.1 Infinitude of prime numbers

You certainly know that there are infinitely many primes. You should know how to explain this; I mean Euclid’s beautiful proof. There are indeed many other proofs. Here is one which appeared most recently ([16]).

Let n be an arbitrary positive integer > 1. Since n and $n + 1$ are consecutive integers, they are relatively prime. Hence, the number $N_2 := n(n + 1)$ must have two different prime divisors. Similarly, since N_2 and $N_2 + 1$ are consecutive, and therefore relatively prime, the number $N_3 := N_2(N_2+1)$ must have at least three distinct prime divisors. If we continue by setting

$$N_{k+1} = N_k(N_k + 1), \quad N_1 = n,$$

then by induction, N_k has at least k distinct prime divisors. It follows that the number of primes exceeds any finite integer.

1.2 Euclidean algorithm and linear Diophantine equations

1.2.1 Euclidean Algorithm

The euclidean algorithm affirms that in every division of integers, there is a unique quotient and a unique remainder, under the stipulation that the remainder must be smaller than the divisor.
Theorem 1.1. Given integers \(a \) and \(b \neq 0 \), there are unique integers \(q \) and \(r \) satisfying
\[
a = bq + r, \quad 0 \leq r < |b|.
\] (1.1)

If \(r = 0 \), we say that \(a \) is divisible by \(b \), or simply that \(b \) divides \(a \), and write \(b | a \).

1.3 The greatest common divisor

Suppose \(a = bq + c \) for integers \(a, b, c, \) and \(q \). It is easy to see that every common divisor of \(a \) and \(b \) is a common divisor of \(b \) and \(c \), and conversely. We define the greatest common divisor of two positive integers \(a \) and \(b \) to be the greatest element of the (nonempty) set of common divisors of \(a \) and \(b \), denoted by \(\gcd(a, b) \). Clearly, if \(b | a \), then \(\gcd(a, b) = b \).

In general, from (1.1), we have \(\gcd(a, b) = \gcd(b, r) \). These observations lead to a straightforward calculation of the gcd of two numbers. To be systematic, we write \(a = r_{-1} \) and \(b = r_0 \) (assumed positive).

\[
\begin{align*}
 r_{-1} &= r_0q_0 + r_1, & 0 \leq r_1 < r_0, \\
 r_0 &= r_1q_1 + r_2, & 0 \leq r_2 < r_1, \\
 r_1 &= r_2q_2 + r_3, & 0 \leq r_3 < r_2, \\
 r_2 &= r_3q_3 + r_4, & 0 \leq r_4 < r_3, \\
 & \vdots \\
 r_{n-2} &= r_{n-1}q_{n-1} + r_n, & 0 \leq r_n < r_{n-1}, \\
 r_{n-1} &= r_nq_n.
\end{align*}
\]

This division process eventually terminates since the remainders get smaller and smaller
\[
r_{-1} > r_0 > r_1 > r_2 > \cdots
\]
and yet remain nonnegative. In other words, some \(r_n \) divides the preceding \(r_{n-1} \) (and leaves a remainder \(r_{n+1} = 0 \)).

\[
\vdots
\]

\[
\begin{align*}
 r_{n-2} &= r_{n-1}q_{n-1} + r_n, & 0 \leq r_n < r_{n-1}, \\
 r_{n-1} &= r_nq_n.
\end{align*}
\]

From these,
\[
r_n = \gcd(r_{n-1}, r_n) = \gcd(r_{n-2}, r_{n-1}) = \cdots = \gcd(r_1, r_0) = \gcd(a, b).
\]
1.3 The greatest common divisor

1.3.1 \(\gcd(a, b)\) as an integer combination of \(a\) and \(b\).

The above calculation of \(\gcd(a, b)\) can be retraced to give \(\gcd(a, b)\) as an integer combination of \(a\) and \(b\). We augment the table of calculations with two extra rows of integers \(x_k\) and \(y_k\) obtained from \(q_{k-1}\) in the same way as \(r_k\), beginning with \((x_{-1}, x_0) = (1, 0)\) and \((y_{-1}, y_0) = (0, 1)\):

\[
x_k = x_{k-2} - q_{k-1}x_{k-1}, \quad x_{-1} = 1, \quad x_0 = 0; \quad y_k = y_{k-2} - q_{k-1}y_{k-1}, \quad y_{-1} = 0, \quad y_0 = 1.
\]

The calculation of \(\gcd(a, b)\), and its expression in terms of \(a\) and \(b\), can be efficiently performed by completing the following table.

<table>
<thead>
<tr>
<th>(k)</th>
<th>(-1)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>...</th>
<th>(n-1)</th>
<th>(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_k)</td>
<td>(a)</td>
<td>(b)</td>
<td>(r_1 = a - bq_0)</td>
<td>(r_2 = b - r_1q_1)</td>
<td>...</td>
<td>(r_{n-1})</td>
<td>(r_n = \gcd)</td>
</tr>
<tr>
<td>(q_k)</td>
<td>(*)</td>
<td>(*)</td>
<td>(q_0)</td>
<td>(q_1)</td>
<td>...</td>
<td>(q_{n-1})</td>
<td>(q_n)</td>
</tr>
<tr>
<td>(x_k)</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(y_k)</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td>...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In each of these steps, \(r_k = ax_k + by_k\). In particular,

\[
\gcd(a, b) = r_n = ax_n + by_n.
\]

It can be proved that \(|x_n| < b\) and \(|y_n| < a\).

1.3.2 Linear Diophantine equations

Theorem 1.2. Let \(a, b, c\) be integers, \(a\) and \(b\) nonzero. Consider the linear Diophantine equation

\[
ax + by = c. \quad (1.2)
\]

1. The equation \((1.2)\) is solvable in integers if and only if \(d := \gcd(a, b)\) divides \(c\).

2. If \((x, y) = (x_0, y_0)\) is a particular solution of \((1.2)\), then every integer solution is of the form

\[
x = x_0 + \frac{b}{d}t, \quad y = y_0 - \frac{a}{d}t,
\]

where \(t\) is an integer.

3. For \(c = \gcd(a, b)\), a particular solution \((x, y) = (x_0, y_0)\) of \((1.2)\) can be found such that \(|x_0| < |b|\) and \(|y_0| < |a|\).
1.4 Chinese remainder theorem

You should know the Chinese remainder theorem as an explicit method of calculation.

Theorem 1.3 (Chinese remainder theorem). If \(m_1, m_2, \ldots, m_k \) are pairwise relatively prime integers, then the simultaneous congruences

\[
\begin{align*}
x & \equiv a_1 \pmod{m_1} \\
x & \equiv a_2 \pmod{m_2} \\
& \vdots \\
x & \equiv a_k \pmod{m_k}
\end{align*}
\]

has a unique solution \(x \mod m \), where \(m = m_1m_2 \cdots m_k \).

This solution \(x \) is found by solving \(k \) similar but simpler problems, each times replacing \(a_1, \ldots, a_k \) by one 1 and all others 0. For \(j = 1, 2, \ldots, k \), find a number \(b_j \) satisfying

\[
b_j \equiv \begin{cases}
1 \pmod{m_i}, & i = j, \\
0 \pmod{m_i}, & i \neq j.
\end{cases}
\]

Such a number must be a multiple of \(m_1 \cdots \widehat{m_j} \cdots m_k \). With such numbers \(b_1, \ldots, b_k \), the solution to the system of simultaneous congruences above is then given by

\[x \equiv a_1b_1 + a_2b_2 + \cdots + a_kb_k \pmod{m}.
\]

1.5 Fermat’s little theorem and the Euler \(\varphi \)-function

Theorem 1.4 (Fermat’s little theorem). If \(p \) is a prime number and \(p \nmid a \), then \(a^{p-1} \equiv 1 \pmod{p} \).

There is a very important generalization involving the Euler \(\varphi \)-function

\[\varphi(n) := |\{k \in \mathbb{Z} : 1 \leq k \leq n \text{ and } \gcd(k, n) = 1\}|.\]

Theorem 1.5. If \(\gcd(a, n) = 1 \), then \(a^{\varphi(n)} \equiv 1 \pmod{n} \).
1.6 Some number theoretic functions

\textbf{Proof.} Let \(m = \varphi(n) \) and

\[a_1, a_2, \ldots, a_m \]

be the \(m \) integers in the range \([1, n]\) relatively prime to \(n \). If \(\gcd(a, n) = 1 \), then

\[a \cdot a_1, a \cdot a_2, \ldots, a \cdot a_m \]

represent exactly the same \(m \) congruence classes mod \(n \). Therefore,

\[a^m \prod_{i=1}^{k} a_i = \prod_{i=1}^{k} (a \cdot a_i) \equiv \prod_{i=1}^{k} a_i \pmod{n}. \]

Cancelling the common invertible congruence class \(\prod_{i=1}^{k} a_i \), we have \(a^m \equiv 1 \pmod{n} \). \hfill \Box

1.6 Some number theoretic functions

\textbf{Theorem 1.6 (Unique factorization).} Every positive integer \(> 1 \) is uniquely the product of distinct prime powers:

\[n = \prod_{i=1}^{k} p_i^{a_i}. \]

Here are three important number theoretic functions.

1. The number of divisors function: \(d(n) := |\{d \in \mathbb{N} : d|n\}|. \)
2. The sum of divisors function: \(\sigma(n) := \sum_{d|n} d. \)
3. Euler \(\varphi \)-function: \(\varphi(n) := |\{k \in \mathbb{Z} : 1 \leq k \leq n \text{ and } \gcd(k, n) = 1\}|. \)

Each of these functions is multiplicative, \(\text{i.e.}, f(mn) = f(m)f(n) \) if \(\gcd(m, n) = 1 \). They are therefore determined by their values at the prime powers.

1. \(d(p^a) = 1 + a; \)
2. \(\sigma(p^a) = 1 + p + \cdots + p^a = \frac{p^{a+1} - 1}{p - 1}; \)
3. \(\varphi(p^a) = p^a - p^{a-1} = p^a \left(1 - \frac{1}{p}\right). \)
Appendix: Perfect numbers

A perfect number is an integer equal to the sum of all of its divisors, including 1 but excluding the number itself. Euclid had given the following rule of construction of even perfect numbers. If \(M_k := 1 + 2 + \cdots + 2^{k-1} = 2^k - 1 \) is a prime number, then the number \(N_k := 2^{k-1}M_k \) is perfect. Now, in terms of the function \(\sigma \), an integer \(n \) is perfect if \(\sigma(n) = 2n \). Here is an easy proof of Euclid’s construction:

\[
\begin{align*}
\sigma(N_k) &= \sigma(2^{k-1}M_k) = \sigma(2^{k-1})\sigma(M_k) = (2^k - 1)(1 + M_k) \\
&= M_k \cdot 2^k = 2 \cdot 2^{k-1}M_k = 2N_k.
\end{align*}
\]

Therefore, \(N_k \) is an even perfect number perfect.

Euler has subsequently shown that every even perfect number must be for this form. \(^2\)

Let \(N \) be an even perfect number, factored into the form \(N = 2^{k-1} \cdot m \), where \(k - 1 \geq 1 \) and \(m \) is odd. Thus,

\[
2N = \sigma(N) = \sigma(2^{k-1} \cdot m) = \sigma(2^{k-1})\sigma(m) = (2^k - 1)\sigma(m).
\]

It follows that

\[
\sigma(m) = \frac{2N}{2^k - 1} = \frac{2^k}{2^k - 1} \cdot m = m + \frac{m}{2^k - 1}.
\]

Note that the number \(\frac{m}{2^k - 1} \), being the difference \(\sigma(m) - m \), is an integer. As such, it is a divisor of \(m \). This expression shows that \(m \) has exactly two divisors. From this we conclude that \(\frac{m}{2^k - 1} = 1 \) and \(m = 2^k - 1 \) is a prime. This means that every even perfect number must be of the form \(2^{k-1}(2^k - 1) \) in which the factor \(2^k - 1 \) is a prime. This was exactly what Euclid gave.

\(^1\)The number \(M_k = 2^k - 1 \) is usually known as the \(k \)-th Mersenne number. There are only 44 known Mersenne primes. The latest and greatest record is \(M_{32582657} \) which has 9808358 digits. It is also the greatest known prime.

\(^2\)It is not known if an odd perfect number exists.
Chapter 2

Pythagorean triangles

2.1 Construction of Pythagorean triangles

By a Pythagorean triangle we mean a right triangle whose sidelengths are integers. Any common divisor of two of the side lengths is necessarily a divisor of the third. We shall call a Pythagorean triangle primitive if no two of its sides have a common divisor. Let \((a, b, c)\) be one such triangle. From the relation \(a^2 + b^2 = c^2\), we make the following observations.

1. Exactly two of \(a, b, c\) are odd, and the third is even.

2. In fact, the even number must be one of \(a\) and \(b\). For if \(c\) is even, then \(a\) and \(b\) are both odd, and \(c^2 = a^2 + b^2 \equiv 1 + 1 = 2 \pmod{4}\), an impossibility.

3. We shall assume \(a\) odd and \(b\) even, and rewrite the Pythagorean relation in the form

\[
\frac{c + a}{2} \cdot \frac{c - a}{2} = \left(\frac{b}{2}\right)^2.
\]

Note that the integers \(\frac{c + a}{2}\) and \(\frac{c - a}{2}\) are relatively prime, for any common divisor of these two numbers would be a common divisor \(c\) and \(a\). Consequently, each of \(\frac{c + a}{2}\) and \(\frac{c - a}{2}\) is a square.

4. Writing \(\frac{c + a}{2} = u^2\) and \(\frac{c - a}{2} = v^2\), we have \(c = u^2 + v^2\) and \(a = u^2 - v^2\). From these, \(b = 2uv\).

5. Since \(c\) and \(a\) are both odd, \(u\) and \(v\) are of different parity.

We summarize this in the following theorem.
Theorem 2.1. The side lengths of a primitive Pythagorean triangle are of the form \(u^2 - v^2 \), \(2uv \), and \(u^2 + v^2 \) for relatively prime integers \(u \) and \(v \) of different parity.

![Pythagorean triangle with side lengths](image)

Figure 2.1: Primitive Pythagorean triangle

Here are some simple properties of a primitive Pythagorean triangle.

1. Exactly one leg is even.
2. Exactly one leg is divisible by 3.
3. Exactly one side is divisible by 5.
4. The area is divisible by 6.

Exercise

Three relatively prime numbers \(a, b, c \) are such that \(a^2, b^2, c^2 \) are in arithmetic progression. Show that they can be written in the form

\[
 a = -p^2 + 2pq + q^2, \quad b = p^2 + q^2, \quad c = p^2 + 2pq - q^2
\]

for relatively prime integers \(p, q \) of different parity

2.2 Primitive Pythagorean triangles with consecutive legs

Let \(a, b, c \) be the lengths of the sides of a right triangle, \(c \) the hypotenuse. Figures (a) and (b) below, together with the Pythagorean theorem, give
the following two relations

\[
(a + b - c)^2 = 2(c - a)(c - b), \quad (2.1)
\]

\[
(a + b + c)^2 = 2(c + a)(c + b). \quad (2.2)
\]

Beginning with a right triangle \((a, b, c)\), we construct a new right triangle \((a', b', c')\) with \(c' - a' = c + b\) and \(c' - b' = c + a\). By a comparison of (2.1) and (2.2), we have \(a' + b' - c' = a + b + c\). From these,

\[
a' = 2a + b + 2c, \quad b' = a + 2b + 2c, \quad c' = 2a + 2b + 3c.
\]

Note that \(b' - a' = b - a\). This construction therefore leads to an infinite sequence of integer right triangles with constant difference of legs. In particular, beginning with \((3, 4, 5)\), we obtain the sequence

\[(3, 4, 5), (20, 21, 29), (119, 120, 169), (696, 697, 985), \ldots\]

of Pythagorean triangles with legs differing by 1.

This construction gives all such Pythagorean triangles. Note that the above construction is invertible: from a right triangle \((a', b', c')\) one can construct a smaller one \((a, b, c)\) with the same difference between the
legs. More precisely,

\[
\begin{align*}
a &= 2a' + b' - 2c', \\
b &= a' + 2b' - 2c', \\
c &= -2a' - 2b' + 3c'.
\end{align*}
\]

(2.3)

Since \(a + b + c = a' + b' - c' < a' + b' + c'\), this inverse construction does yield a smaller triangle. However, it certainly \textit{cannot} lead to a strictly decreasing sequence of integer right triangles. Now, \(a = 2a' + b' - 2c'\) must be a positive integer. Using the Pythagorean theorem, it is easy to deduce from \(a' + b' > c'\) that \(4a' > 3b'\), or \(a' > 3(b' - a')\). This means that from every Pythagorean triangle with legs differing by 1, there is a descent, by repeated applications of (2.3), to a minimal integer right triangle with shortest side not exceeding 3. It is clear that there is only one such triangle, namely, (3,4,5). This therefore shows that the above construction actually gives \textit{all} Pythagorean triangles with consecutive legs.

\section{2.3 Fermat Last Theorem for \(n = 4\)}

\textbf{Theorem 2.2 (Fermat).} The area of a Pythagorean triangle cannot be a square.

\textit{Proof.} Suppose to the contrary there is one such triangle, which we may assume primitive, with side lengths \((u^2 - v^2, 2uv, u^2 + v^2)\), \(u, v\) being relative prime of different parity. The area \(A = uv(u^2 - v^2)\) being a square, and no two of \(u, v, u^2 - v^2\) sharing common divisors, each of these numbers must be a square. We write \(u = a^2, v = b^2\) so that \(u^2 - v^2 = a^4 - b^4\) is also a square. Since \(a^4 - b^4 = (a^2 - b^2)(a^2 + b^2)\) and the two factors are relatively prime, we must have \(a^2 - b^2 = r^2\) and \(a^2 + b^2 = s^2\) for some integers \(r\) and \(s\). From these, \(2a^2 = r^2 + s^2\) and

\[
(2a)^2 = 2(r^2 + s^2) = (r + s)^2 + (r - s)^2.
\]

Thus, we have a new Pythagorean triangle \((r - s, r + s, 2a)\). This is a Pythagorean triangle whose area is the square of an integer:

\[
\frac{1}{2}(r - s)(r + s) = \frac{1}{2}(r^2 - s^2) = b^2.
\]

But it is a \textit{smaller} triangle since \(b^2 = v\) is a proper divisor of \(A = uv(u^2 - v^2)\). By descent, beginning with one Pythagorean triangle with
square area, we obtain an infinite sequence of Pythagorean triangles with decreasing areas, each of which is a square integer; a contradiction. □

Corollary 2.3 (Fermat Last Theorem for $n = 4$). The equation

$$x^4 + y^4 = z^4$$

does not have solutions in nonzero integers.

Proof. Suppose $x^4 + y^4 = z^4$ for positive integers x, y, z. The Pythagorean triangle with sides $z^4 - y^4, 2z^2y^2$ and $z^4 + y^4$ has a square area

$$z^2 y^2 (z^4 - y^4) = z^4 y^4 = (x^2 y z)^2,$$

a contradiction. □

Remark. This proof actually shows that the equation $x^2 + y^4 = z^4$ has no solution in nonzero integers.

Theorem 2.4. There is no integer right triangle whose area is twice a square.

Proof. Suppose there is one such triangle, which we may assume primitive, with sides $u^2 - v^2, 2uv, u^2 + v^2$ for relatively prime u and v of different parity. The area is $uv(u^2 - v^2)$. Note that $u^2 - v^2$ and one of u, v must be odd. Since $u^2 - v^2$ is an odd square, u is odd and v is even. The area being twice a square, we must have $u = r^2, v = 2s^2, u + v = m^2, u - v = n^2$ for integers r, s, m, n. $4s^2 = 2v = m^2 - n^2 = (m + n)(m - n)$. Since $m + n$ and $m - n$ are even and have gcd = 1, we have $m + n = 2p^2$ and $m - n = 2q^2$ for relatively prime integers p and q. Thus, $m = p^2 + q^2$ and $n = p^2 - q^2$. Also,

$$p^4 + q^4 = \frac{1}{2} ((p^2 + q^2)^2 + (p^2 - q^2)^2) = \frac{1}{2} (m^2 + n^2) = u = r^2.$$

This gives a smaller integer triangle of sides (p^2, q^2, r) whose area is $\frac{1}{2} (p^2q^2)^2 = 2 \left(\frac{u^2}{2} \right)^2$, twice a square. By descent, we arrive at a contradiction. □

Corollary 2.5. The equation $x^4 + y^4 = z^2$ has no nontrivial solution in positive integers. \(^1\)

\(^1\)Here is a more direct proof of the corollary without invoking Pythagorean triangles. Suppose $x^4 + y^4 = z^2$ with x, y, z pairwise relatively prime. By considering the equation modulo 4, we see that z and exactly one of x, y must be odd. Assume x even. Note that $x^4 = z^2 - y^4 = (z - y^4)(z + y^4)$. The two factors
Corollary 2.6. The product of 4 nonzero integers in arithmetic progression (with nonzero common difference) cannot be a fourth power of an integer.

Proof. Given four integers in A. P., by doubling if necessary, we may write the numbers as $a - 3d, a - d, a + d,$ and $a + 3d,$ for integers a and $d.$ If their product

$$(a - 3d)(a - d)(a + d)(a + 3d) = (a^2 - d^2)(a^2 - 9d^2) = a^4 - 10a^2d^2 + 9d^4$$

is a fourth power, say $x^4,$ we have $x^4 + (2d)^4 = (a^2 - 5d^2)^2,$ an impossibility since d and x are nonzero. □

Remark. We shall later prove the stronger result that the product of 4 distinct nonzero integers in arithmetic progression cannot be a square.

Exercise

Prove that the product of 4 consecutive integers cannot be a square.

2.4 Nonexistence of a pair of Pythagorean triangles with legs $a, b,$ and $a, 2b$

Proposition 2.7. There do not exist a pair of integer right triangles with legs (a, b) and $(a, 2b)$.

Proof. Suppose there is one such pair. We may assume $a,$ b relatively prime. We may also assume a odd, for if a is even, then we may replace by the smaller pair $(\frac{a}{2}, b)$ and $(a, b).$ There are integers u, v, x, y such that

(i) u and v are relatively prime and of different parity, and

$$a = u^2 - v^2, \quad b = 2uv;$$

(ii) x and y are relatively prime and of different parity, and

$$a = x^2 - y^2, \quad b = xy.$$
This means $xy = 2uv$. There exist pairwise relatively prime integers p, q, r, s such that

$$x = pq, \quad y = 2rs; \quad u = pr, \quad v = qs.$$

Substitution into $x^2 - y^2 = u^2 - v^2$ gives

$$q^2(p^2 + s^2) = r^2(p^2 + 4s^2).$$

Now, q is prime to r and p is prime to s. Note that any common divisor of $p^2 + s^2$ and $p^2 + 4s^2$ must divide their difference and hence must be a multiple of 3. This is impossible since $\gcd(p, s) = 1$. It follows that $p^2 + s^2 = r^2$ and $p^2 + 4s^2 = q^2$, and we have a smaller pair of integer right triangles with legs (p, s) and $(p, 2s)$. This pair is indeed smaller since $s < v < b$. This is a contradiction by infinite descent. \(\square\)

Therefore, it is impossible to make $x^2 + y^2$ and $x^2 + 4y^2$ simultaneously squares. This is often expressed by saying that the two quadratic forms are discordant.

2.5 Impossibility of 4 squares in arithmetic progression

We study the possibility of four integer squares in arithmetic progression. It is well known that n^2 is the sum of the first n odd numbers, i.e.,

$$1 + 3 + 5 + \cdots + (2n - 1) = n^2.$$

Suppose four integer squares A^2, B^2, C^2, D^2 are in arithmetic progression. This means that the three segments of consecutive odd numbers

$$2A + 1, \ldots, 2B - 1,$$

$$2B + 1, \ldots, 2C - 1,$$

$$2C + 1, \ldots, 2D - 1$$

have equal sums. These segments have $a = B - A$, $b = C - B$, and $c = D - C$ numbers respectively. Their sums are

$$a(A + B) = a(2B - a),$$

$$b(B + C) = b(2B + b) = b(2C - b),$$

$$c(C + D) = c(2C + c).$$

\(^2p^2 + s^2 \equiv 0 \pmod{3}\) only if $p \equiv s \equiv 0 \pmod{3}$.\)
The first two have equal sums if and only if \(2B = \frac{a^2 + b^2}{a-b}\). Likewise, the last two have equal sums if and only if \(2C = \frac{b^2 + c^2}{b-c}\). It follows that if the three sums are equal, then \(\frac{b^2 + c^2}{b-c} - \frac{a^2 + b^2}{a-b} = 2b\). Simplifying this, we have
\[
(a + c)b^2 + (a - c)b - ac(a + c) = 0.
\]
This has integer solution in \(b\) only if \((a - c)^4 + 4ac(a + c)^2 = a^4 + 14a^2c^2 + c^4\) is the square of an integer. By writing \(x = a + c\) and \(y = a - c\), we have \(x^4 - x^2y^2 + y^4 = z^2\) for some integer \(z\).

Proposition 2.8. The Diophantine equation \(x^4 - x^2y^2 + y^4 = z^2\) has no nonzero solutions in integers except \(x^2 = y^2 = z^2\).

Proof. Suppose there is a positive integer solution with \(x > y\). We may assume \(x\) and \(y\) relatively prime, and rewrite the equation in the form
\[
(x^2 - y^2)^2 + (xy)^2 = z^2.
\]
Here, \(x^2 - y^2\) and \(xy\) are relatively prime, so that \((x^2 - y^2, xy, z)\) is a primitive Pythagorean triple.

(1) Suppose both \(x\) and \(y\) are odd. Then there are relatively prime \(u, v\), of different parity, so that
\[
x^2 - y^2 = 2uv, \quad xy = u^2 - v^2.
\]
Here,
\[
(u^2 - v^2)^2 + (uv)^2 = \left(\frac{x^2 + y^2}{2}\right)^2,
\]
or
\[
u^4 - u^2v^2 + v^4 = z'^2,
\]
This is an equation of the same type, in which \(u\) and \(v\) have different parity. It is a smaller solution since
\[
z'^2 = \left(\frac{x^2 + y^2}{2}\right)^2 = \frac{1}{4}[(x^2 - y^2)^2 + 4(xy)^2]
\]
\[
= u^2v^2 + (u^2 - v^2)^2 \leq (u^2 + v^2)^2 = z^2.
\]

(2) Now consider the case when \(x\) and \(y\) are of different parity. We shall assume \(y\) even. There are relatively prime integers \(u\) and \(v\) such that
\[
x^2 - y^2 = u^2 - v^2, \quad xy = 2uv.
\]
This gives a pair of integer right triangles with legs \((a, b)\) and \((a, 2b)\). Such a pair does not exist by Proposition 2.7. □
Theorem 2.9. There do not exist 4 distinct nonzero squares in arithmetic progression.

Theorem 2.10. The product of 4 nonzero integers in arithmetic progression (with nonzero common difference) cannot be a square.

Proof. Consider an arithmetic progression $a, a + d, a + 2d, a + 3d$ of integers with a square product. We may assume $\gcd(a, d) = 1$. The only possibility of a pair of these numbers admitting a common divisor are

(i) $\gcd(a, a + 2d) = 2$,
(ii) $\gcd(a + d, a + 3d) = 2$, or
(iii) $\gcd(a, a + 3d) = 3$. Therefore, each of the numbers $a, a + d, a + 2d, a + 3d$ is a square with a possibly extra factor 2, 3 or 6. Here are the only possibilities:

(a) A^2, B^2, C^2, D^2;
(b) $6A^2, B^2, 2C^2, 3D^2$;
(c) $3A^2, 2B^2, C^2, 6D^2$.

Case (a) is impossible by Theorem 2.9.

For cases (b) and (c), we make use of the easily verified identity (for four terms in arithmetic progression):

$$(a + 2d)(a + 3d) - a(a + d) = 2((a + d)(a + 3d) - a(a + 2d)).$$

In (b), we have $2C^2(3D^2) - (6A^2)(B^2) = 2((B^2)(3D^2) - (6A^2)(2C^2))$, and $C^2(4A^2 + D^2) = B^2(A^2 + D^2)$. Since we may assume A, B, C, D relatively prime, this means that $A^2 + D^2$ and $4A^2 + D^2$ are both squares, contradicting Proposition 2.7.

Similarly, in (c), we have $C^2(A^2 + D^2) = B^2(A^2 + 4D^2)$, a contradiction for the same reasoning. □
Appendix: Primitive Pythagorean triples < 1000

<table>
<thead>
<tr>
<th>m, n</th>
<th>a, b, c</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>3, 4, 5</td>
<td>5.2</td>
<td>21, 20, 29</td>
<td>7.2</td>
<td>45, 28, 33</td>
<td>8.3</td>
<td>55, 48, 73</td>
</tr>
<tr>
<td>9.4</td>
<td>65, 72, 97</td>
<td>10.7</td>
<td>51, 140, 149</td>
<td>11.6</td>
<td>85, 132, 157</td>
<td>12.5</td>
<td>119, 120, 169</td>
</tr>
<tr>
<td>13.4</td>
<td>155, 104, 185</td>
<td>13.12</td>
<td>25, 312, 341</td>
<td>14.9</td>
<td>115, 252, 277</td>
<td>15.4</td>
<td>209, 120, 241</td>
</tr>
<tr>
<td>16.3</td>
<td>247, 96, 265</td>
<td>16.11</td>
<td>135, 532, 571</td>
<td>17.4</td>
<td>273, 136, 369</td>
<td>17.12</td>
<td>145, 408, 433</td>
</tr>
<tr>
<td>18.2</td>
<td>289, 139, 370</td>
<td>18.17</td>
<td>35, 612, 614</td>
<td>19.18</td>
<td>297, 304, 425</td>
<td>19.16</td>
<td>105, 608, 617</td>
</tr>
<tr>
<td>20.7</td>
<td>351, 280, 449</td>
<td>20.11</td>
<td>111, 680, 689</td>
<td>21.8</td>
<td>371, 336, 605</td>
<td>22.1</td>
<td>483, 44, 485</td>
</tr>
<tr>
<td>22.9</td>
<td>403, 396, 565</td>
<td>22.19</td>
<td>123, 836, 845</td>
<td>23.6</td>
<td>493, 276, 665</td>
<td>23.14</td>
<td>333, 644, 725</td>
</tr>
<tr>
<td>26.3</td>
<td>667, 156, 685</td>
<td>26.11</td>
<td>555, 572, 797</td>
<td>27.4</td>
<td>713, 216, 745</td>
<td>27.16</td>
<td>473, 864, 985</td>
</tr>
<tr>
<td>28.9</td>
<td>763, 504, 865</td>
<td>29.4</td>
<td>825, 242, 857</td>
<td>29.12</td>
<td>697, 696, 985</td>
<td>31.4</td>
<td>945, 248, 977</td>
</tr>
</tbody>
</table>

5.7. Genealogy of primitive Pythagorean triples

A. Hall [6] has arranged the totality the primitive Pythagorean triples in the form of a binary tree, with the (3, 4, 5) triangle at its root. Recall that a primitive Pythagorean triangle is represented by a unique rational number $t = \frac{a}{m}$, with $\gcd(m, n) = 1$ and m, n of different parity. We call
t the rational parameter of the primitive Pythagorean triangle.

In this genealogy, each primitive Pythagorean triangle (with parameter t) has exactly three descendents, with rational parameters \(s = \frac{1}{2-t}, \frac{1}{2+t}, \frac{t}{1+2t} \) respectively. (Check that each of these rational parameters does lie in the open interval \((0, 1)\), and is represented by a reduced fraction whose numerator and denominator are of different parity). We shall keep to this order of the descendents and label them the left (L), middle (M), and right (R) respectively. Thus, the \((3, 4, 5)\) triangle, with rational parameter \(\frac{1}{2} \) has left descendent \(\frac{2}{5} \), middle descendent \(\frac{2}{3} \) and right descendent \(\frac{1}{4} \).

If we write \(t = \frac{n}{m} \), then these three descendents are \(\frac{m}{2m-n}, \frac{m}{2m+n} \) and \(\frac{n}{m+2n} \). If we call \(n + m \) the heights of the rational number \(\frac{n}{m} \) in reduced form, these three descendents have greater heights.

Now, each rational number \(s \in (0, 1) \setminus \{\frac{1}{3}, \frac{1}{2}\} \) is the descendent of a unique rational number \(t \). In fact, given a rational number \(s = \frac{p}{q} \in (0, 1) \), exactly one of \(\frac{2s-1}{s} = \frac{2q-p}{q}, \frac{1-2s}{s} = \frac{p-2q}{q} \), and \(\frac{s}{1-2s} = \frac{q}{p-2q} \) is in \((0, 1)\).

We call this the parent of \(s \). In fact, \(s \) is
(i) the left descendent of \(\frac{2q-p}{q} \) if \(q < p < 2q \),
(ii) the middle descendent of \(\frac{p-2q}{q} \) if \(2q < p < 3q \), and
(iii) the right descendent of \(\frac{q}{p-2q} \) if \(p > 3q \).
Therefore, each rational parameter \(s \in (0, 1) \setminus \left\{ \frac{1}{3}, \frac{1}{2} \right\} \) has a unique “ancestral sequence” tracing back to the root \(\frac{1}{2} \) (of height 3). For example,

\[
\frac{23}{36} \leftarrow L \quad \frac{10}{23} \leftarrow M \quad \frac{3}{10} \leftarrow R \quad \frac{3}{4} \leftarrow L \quad \frac{2}{3} \leftarrow L \quad \frac{1}{2}.
\]

If we “flatten” the entire ternary tree by listing the vertices in order, beginning with the “root”, going down through each level from left to right, what is the position of a vertex with a known ancestral sequence? Suppose this ancestral sequence has \(k \) terms, \(i.e. \), the vertex is \(k \) levels below the root. Convert it into an integer \(N \) in base 3 expansion by

\[
L \rightarrow 0, \quad M \rightarrow 1, \quad R \rightarrow 2
\]

respectively. Then the position of the vertex in the list is \(\frac{1}{2}(3^k + 1) + N \).

For example, the rational number \(\frac{23}{36} \) is in position \(\frac{1}{2}(3^5 + 1) + 01200_3 = 122 + 45 = 167 \).

Exercise

What is the 1000-th vertex in this list? \(1000 = 1 + 1 + 3 + 3^2 + 3^3 + 3^4 + 3^5 + 635 \). The base 3 expansion of 635 is 2121123. The ancestral sequence of the vertex is therefore

\[
\frac{40}{169} \leftarrow R \quad \frac{40}{89} \leftarrow M \quad \frac{9}{40} \leftarrow R \quad \frac{9}{22} \leftarrow M \quad \frac{4}{9} \leftarrow M \quad \frac{1}{4} \leftarrow R \quad \frac{1}{2}.
\]
Chapter 3

Homogeneous quadratic equations in 3 variables

3.1 Pythagorean triangles revisited

A primitive Pythagorean triangle \((a, b, c)\) corresponds to a point \((x, y) = \left(\frac{a}{c}, \frac{b}{c} \right)\) in the first quadrant on the unit circle

\[x^2 + y^2 = 1. \]

Every rational point on the unit circle can be expressed in terms of the slope of the line joining the point to a fixed point, say \(P = (-1, 0)\) on the circle. Thus, solving the equations

\[y = t(x + 1), \]
\[x^2 + y^2 = 1, \]

simultaneously, we obtain \((x, y) = (-1, 0) = P\) or

\[(x, y) = P(t) = \left(\frac{1 - t^2}{1 + t^2}, \frac{2t}{1 + t^2} \right).\]

This is a point in the first quadrant if and only if \(0 < t < 1\). By putting \(t = \frac{q}{p}\) for relatively prime integers \(p > q\), and we obtain \((\frac{p^2 - q^2}{p^2 + q^2}, \frac{2pq}{p^2 + q^2})\).

It follows that the sidelengths of a primitive Pythagorean triangle can be written in the form

\[(a, b, c) = \frac{1}{g} \left(p^2 - q^2, 2pq, p^2 + q^2 \right)\]
for suitable choice of \(p \) and \(q \). Here,

\[g = \gcd(p^2 - q^2, 2pq) = \gcd(p^2 - q^2, 2) = \gcd(p - q, 2). \]

To avoid repetition of representing a primitive Pythagorean triangle by both \((x, y)\) and \((y, x)\) in the first quadrant, we note that

\[\left(\frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2} \right) = \left(\frac{2s}{1+s^2}, \frac{1-s^2}{1+s^2} \right) \]

if and only if \(s = \frac{1-t}{1+t} \). Thus, the rational number \(t = \frac{q}{p} \) and \(s = \frac{q'}{p'} \), represent the same primitive Pythagorean triangle. Note that \(\gcd(p - q, 2) = 1 \) if and only if \(\gcd(p' - q', 2) = 2 \). Thus, we may always restrict \(p \) and \(q \) of different parity.

3.2 Rational points on a conic

The method in the preceding section applies to a general (nonsingular) homogeneous equation in 3 variables, or after dehomogenization, to a nonsingular conic in the Cartesian plane. Suppose a nonsingular conic \(f(x, y) = c \) contains a rational point \(P = (x_0, y_0) \). Then by passing through \(P \) lines of rational slope \(t \) to intersect the conic again, we obtain a parametrization of the rational points on the curve.

Proposition 3.1. (1) The rational solutions of \(x^2 - dy^2 = 1 \) can be parametrized in the form

\[(x, y) = \left(\frac{1 + dt^2}{1 - dt^2}, \frac{2t}{1 - dt^2} \right). \]

(2) The positive integer solutions of \(x^2 - dy^2 = z^2 \) can be parametrized in the form

\[(x, y, z) = \frac{1}{g} \left(p^2 + dq^2, 2pq, p^2 - dq^2 \right), \]

where \(g = \gcd(p^2 + dq^2, 2pq, p^2 - dq^2) \).
Chapter 4

Integer triangles with a 60° or 120° angle

4.1 Integer triangles with a 60° angle

If triangle ABC has $C = 60^\circ$, then

$$c^2 = a^2 - ab + b^2. \tag{4.1}$$

Integer triangles with a 60° angle therefore correspond to rational points in the first quadrant on the curve

$$x^2 - xy + y^2 = 1. \tag{4.2}$$

Note that the curve contains the point $P = (-1, -1)$. By passing a line of rational slope t through P to intersect the curve again, we obtain a parametrization of the rational points. Now, such a line has equation $y = -1 + t(x + 1)$. Solving this simultaneously with (4.2) we obtain $(x, y) = (-1, -1) = P$, and

$$(x, y) = \left(\frac{2t - 1}{t^2 - t + 1}, \frac{t(2 - t)}{t^2 - t + 1} \right),$$

which is in the first quadrant if $\frac{1}{2} < t \leq 2$. By symmetry, we may simply take $\frac{1}{2} < t \leq 1$ to avoid repetition. Putting $t = \frac{q}{p}$ for relatively prime integers p, q, and clearing denominators, we obtain

$$a = p(2q - p),$$
$$b = q(2p - q),$$
$$c = p^2 - pq + q^2,$$
with \(\frac{p}{2} < q \leq p \).

\[
\text{gcd}(a, b) = \text{gcd}(2pq - p^2, 2pq - q^2) \\
= \text{gcd}((p - q)(p + q), q(2p - q)) \\
= \text{gcd}((p - q)(p + q), 2p - q)
\]

since \(\text{gcd}(p - q, q) = \text{gcd}(p + q, q) = \text{gcd}(p, q) = 1 \). Now,
\(\text{gcd}(p - q, 2p - q) = \text{gcd}(p - q, p) = 1 \) and
\(\text{gcd}(p + q, 2p - q) = \text{gcd}(p + q, 3p) = \text{gcd}(p + q, 3) \). This gives
\(\text{gcd}(a, b) = \text{gcd}(p + q, 3) \).

Proposition 4.1. The primitive integer triangles with a 60° angle are
given by

\[
\frac{1}{g} \left(p(2q - p), q(2p - q), p^2 - pq + q^2 \right),
\]

where \(p \) and \(q \) are relatively prime positive integers satisfying \(\frac{p}{2} < q \leq p \)
and \(g = \text{gcd}(p + q, 3) \).

<table>
<thead>
<tr>
<th>(p)</th>
<th>(q)</th>
<th>((a, b, c))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>(1, 1, 1)</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>(3, 8, 7)</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>(8, 15, 13)</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>(5, 21, 19)</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>(5, 8, 7)</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>(24, 35, 31)</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>(7, 40, 37)</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>(7, 15, 13)</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>(39, 48, 43)</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>(16, 55, 49)</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>(16, 21, 19)</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>(9, 65, 61)</td>
</tr>
<tr>
<td>9</td>
<td>7</td>
<td>(45, 77, 67)</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>(63, 80, 73)</td>
</tr>
<tr>
<td>10</td>
<td>7</td>
<td>(40, 91, 79)</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>(80, 99, 91)</td>
</tr>
</tbody>
</table>

Exercise

A standard calculus exercise asks to cut equal squares of dimension \(x \)
from the four corners of a rectangle of length \(a \) and breadth \(b \) so that the
box obtained by folding along the creases has a greatest capacity.
The answer to this problem is given by

\[x = \frac{a + b - \sqrt{a^2 - ab + b^2}}{6}. \]

How should one choose relatively prime integers \(a \) and \(b \) so that the resulting \(x \) is an integer? For example, when \(a = 5, b = 8, x = 1 \). Another example is \(a = 16, b = 21 \) with \(x = 3 \).

4.2 Integer triangles with a 120° angle

If triangle \(ABC \) has \(C = 120° \), then

\[c^2 = a^2 + ab + b^2. \quad (4.3) \]

Integer triangles with a 120° angle therefore correspond to rational points in the first quadrant on the curve

\[x^2 + xy + y^2 = 1. \quad (4.4) \]

Note that the curve contains the point \(Q = (-1, 0) \). By passing a line of rational slope \(t \) through \(P \) to intersect the curve again, we obtain a parametrization of the rational points. Now, such a line has equation \(y = t(x + 1) \). Solving this simultaneously with (4.2) we obtain \((x, y) = (-1, 0) = Q \), and

\[Q(t) = \left(\frac{1 - t^2}{t^2 + t + 1}, \frac{t(2 + t)}{t^2 + t + 1} \right), \]

which is in the first quadrant if \(0 < t < 1 \). It is easy to check that \(Q(t) \) and \(Q\left(\frac{1-t}{1+2t} \right) \) are symmetric about the line \(y = x \). To avoid repetition we may restrict to \(0 < t < \frac{\sqrt{3}-1}{2} \).
Putting \(t = \frac{q}{p} \) for relatively prime integers \(p, q \) satisfying \(q < \frac{\sqrt{3} - 1}{2} p \), and clearing denominators, we obtain

\[
\begin{align*}
a &= p^2 - q^2, \\
b &= q(2p + q), \\
c &= p^2 + pq + q^2,
\end{align*}
\]

with \(0 < q < p \). Note that

\[
gcd(p^2 - q^2, q(2p + q)) = gcd((p + q)(p - q), q(2p + q)) \\
= gcd((p + q)(p - q), 2p + q) \\
= gcd(p - q, 2p + q) \\
= gcd(p - q, 3p) \\
= gcd(p - q, 3).
\]

Proposition 4.2. The primitive integer triangles with a \(120^\circ \) angle are given by

\[
\frac{1}{g} \left(p^2 - q^2, q(2p + q), p^2 + pq + q^2 \right),
\]

where \(q < \left(\frac{\sqrt{3} - 1}{2} \right) p \) are relatively prime positive integers and \(g = gcd(p - q, 3) \).

<table>
<thead>
<tr>
<th>(p)</th>
<th>(q)</th>
<th>((a, b, c))</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>(8, 7, 13)</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>(5, 3, 7)</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>(24, 11, 31)</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>(35, 13, 43)</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>(16, 5, 19)</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>(45, 32, 67)</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>(63, 17, 73)</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>(80, 19, 91)</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>(77, 40, 103)</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>(33, 7, 37)</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>(91, 69, 130)</td>
</tr>
</tbody>
</table>

Exercise

1 (a) Show that a number \(c \) is a sum of two consecutive squares if and only if \(2c - 1 \) is a square.
4.3 A pair of discordant forms: \(x^2 \pm xy + y^2 \)

(b) Suppose an integer triangle contains a 120° angle with its two arms differing by 1. Show that the length of the longest side is a sum of two consecutive squares.

2. It is known that the centroid of a triangle of sides \(a, b, c \) lies on its incircle if and only if

\[
5(a^2 + b^2 + c^2) = 6(ab + bc + ca).
\]

Find a parametrization of all such primitive triangles.

4.3 A pair of discordant forms: \(x^2 \pm xy + y^2 \)

We show that it is impossible to have a pair of integer triangles with the same adjacent sides \(x, y \) and included angles equal to 60° and 120° respectively. In other words, \(x^2 - xy + y^2 \) and \(x^2 + xy + y^2 \) cannot be made squares simultaneously. If so, then their product would be a square, namely, \(x^4 + x^2y^2 + y^4 = \square \). This contradicts the following theorem.

Proposition 4.3. There do not exist a pair of Pythagorean triangles of sidelengths \((a, b, c)\) and \((a', 2b, c)\).

The proof is similar to Proposition 2.7.

Theorem 4.4. The Diophantine equation \(x^4 + x^2y^2 + y^4 = z^2 \) does not have nonzero solutions in integers.

Proof. Suppose the equation has nontrivial solutions in integers \(x, y, z \), which we may assume relatively prime. Then \((x^2 + y^2)^2 = z^2 + (xy)^2\). This gives a primitive Pythagorean triangle, say with parameters \(u \) and \(v \). This means \(x \) and \(y \) are of different parity, and \(xy = 2uv \), \(z = u^2 - v^2 \). This gives a pair of Pythagorean triangles with equal hypotenuses and one with a leg twice a leg of the other, and is a contradiction to Proposition 4.3.

Exercise

Show that in a parallelogram with a 60° angle, the side and the diagonals cannot all have integer lengths.
Integer triangles with a 60° or 120° angle
Chapter 5

Heron triangles

5.1 The Heron formula

Let ABC be a triangle with sidelengths $BC = a$, $CA = b$, $AB = c$, and semiperimeter $s = \frac{1}{2}(a + b + c)$. If the incircle touches the sides BC, CA and AB respectively at X, Y, and Z,

$$AY = AZ = s - a, \quad BX = BZ = s - b, \quad CX = CY = s - c.$$

The radius r of the incircle and the area \triangle of the triangle are given by

$$r = \sqrt{\frac{(s - a)(s - b)(s - c)}{s}},$$
$$\triangle = \sqrt{s(s - a)(s - b)(s - c)}.$$

The latter one is the famous Heron formula. Explicitly in terms of a, b, c, it can be written as

$$\triangle^2 = \frac{1}{16} \left(2a^2b^2 + 2b^2c^2 + 2c^2a^2 - a^4 - b^4 - c^4 \right). \quad (5.1)$$
Remark. The inradius of a right triangle is \(r = s - c \).

Exercise

Given a positive integer \(r \), determine all Pythagorean triangles with inradius \(r \).

First consider the case of primitive Pythagorean triangles. The one with parameters \(p > q \) (of different parity) has inradius \(r = q(p - q) \). Note that \(p - q \) must be odd, and \(q \) does not contain any prime divisor of \(p - q \). There are \(2^k \) choices of \(p - q \), where \(k \) is the number of odd prime divisors of \(r \). In particular, there is only one (primitive) Pythagorean triangle of inradius 1, which is the \((3, 4, 5)\) triangle.

5.2 Heron triangles

A Heron triangle is an integer triangle with integer area. Here are some fundamental facts about Heron triangles.

Proposition 5.1. (1) The semiperimeter of a Heron triangle is an integer. (2) The area of a Heron triangle is a multiple of 6.

Proof. It is enough to consider primitive Heron triangles, those whose sides are relatively prime.

(1) Note that modulo 16, each of \(a^4 \), \(b^4 \), \(c^4 \) is congruent to 0 or 1, according as the number is even or odd. To render in (5.1) the sum \(2a^2b^2 + 2b^2c^2 + 2c^2a^2 - a^4 - b^4 - c^4 \equiv 0 \) modulo 16, exactly two of \(a \), \(b \), \(c \) must be odd. It follows that the perimeter of a Heron triangle must be an even number.

(2) Since \(a \), \(b \), \(c \) are not all odd nor all even, and \(s \) is an integer, at least one of \(s - a \), \(s - b \), \(s - c \) is even. This means that \(\triangle \) is even. We claim that at least one of \(s \), \(s - a \), \(s - b \), \(s - c \) must be a multiple of 3. If not, then modulo 3, these numbers are +1 or −1. Since \(s = (s-a)+(s-b)+(s-c) \), modulo 3, this must be either 1 \(\equiv 1+1+(-1) \) or
\[-1 \equiv 1 + (-1) + (-1). \] In each case the product \(s(s-a)(s-b)(s-c) \equiv -1 \mod 3 \) cannot be a square. This justifies the claim that one of \(s, s-a, s-b, s-c \), hence \(\triangle \), must be a multiple of 3.

5.3 Construction of Heron triangles

Let \(t_1 = \tan \frac{A}{2}, t_2 = \tan \frac{B}{2}, \) and \(t_3 = \tan \frac{C}{2}. \) Since \(\frac{A}{2} + \frac{B}{2} + \frac{C}{2} = \frac{\pi}{2} \), we have \(t_1 t_2 + t_2 t_3 + t_3 t_1 = 1. \) If we construct a triangle with sides \(\frac{1}{t_2} + \frac{1}{t_3}, \frac{1}{t_3} + \frac{1}{t_1}, \) and \(\frac{1}{t_1} + \frac{1}{t_2} \), then it has inradius 1 and area

\[
\sqrt{\frac{1}{t_1} \cdot \frac{1}{t_2} \cdot \frac{1}{t_3} \left(\frac{1}{t_1} + \frac{1}{t_2} + \frac{1}{t_3} \right)} = \frac{1}{t_1 t_2 t_3}.
\]

Writing \(t_i = \frac{p_i}{q_i} \) for relatively prime integers \(p_i, q_i, i = 1, 2, \) and magnifying the triangle by a factor \(p_1 p_2 p_3 \), we obtain a Heron triangle with sides

\[
a = p_1(p_2 q_3 + p_3 q_2), \quad b = p_2(p_3 q_1 + p_1 q_3), \quad c = p_3(p_1 q_2 + p_2 q_1),
\]

and area \(p_1 p_2 p_3 q_1 q_2 q_3 \) and inradius \(p_1 p_2 p_3 \).

Note that these integers satisfy

\[
p_1 p_2 q_3 + p_1 q_2 p_3 + q_1 p_2 p_3 = q_1 q_2 q_3,
\]
or

\[
\frac{p_3}{q_3} = \frac{q_1 q_2 - p_1 p_2}{p_1 q_2 + p_2 q_1}.
\]
5.4 Heron triangles with sides in arithmetic progression

Consider a primitive Heron triangle with sides in arithmetic progression. By Proposition 5.1, the sidelengths are $2a - d, 2a, 2a + d$ for integers a and d. The semiperimeter being $s = 3a$, we require $(3a)(a + d)(a - d) = 3a^2(a^2 - d^2)$ to be an integer. This means

$$a^2 - d^2 = 3b^2 \quad (5.2)$$

for an integer b. With $x := \frac{a}{d}, y := \frac{b}{d}$, we transform this condition into $x^2 - 3y^2 = 1$. The Heron triangles with sides in arithmetic progression, therefore, correspond to the rational points in the first quadrant on the curve $x^2 - 3y^2 = 1$. Now, such rational points can be parametrized as

$$(x, y) = \left(\frac{1 + 3t^2}{1 - 3t^2}, \frac{2t}{1 - 3t^2}\right), \quad 0 < t < \frac{1}{\sqrt{3}}.$$

The integer solutions of (5.2) are therefore

$$a = p^2 + 3q^2, \quad d = p^2 - 3q^2, \quad b = 2pq$$

for relatively prime p, q satisfying $p^2 > 3q^2$. This gives a Heron triangle $(2a - d, 2a, 2a + d; 3ab)$. In each case, we obtain a primitive Heron triangle by dividing the sidelengths by the $g = \gcd(2a, d)$ (and correspondingly \triangle by g^2).

Here are the primitive Heron triangles with sides in A.P., generated by taking $p \leq 7$: 1

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$(a, b, c; \triangle)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>(13, 14, 15; 84)</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>(3, 4, 5; 6)</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>(25, 38, 51; 456)</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>(17, 28, 39; 210)</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>(61, 74, 87; 2220)</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>(15, 26, 37; 156)</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>(29, 52, 75; 546)</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>(85, 122, 159; 5124)</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>(66, 76, 87; 2394)</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>(193, 194, 195; 16296)</td>
</tr>
</tbody>
</table>

1Note that some of these Heron triangles have consecutive integers as sidelengths, namely $(3, 4, 5; 6)$, $(13, 14, 15; 84)$, and $(193, 194, 195; 1629)$. These correspond to $d = 1$. We shall treat this case in detail when we study the Pell equation. There is one such “small” triangle missing from the table, corresponding to $(p, q) = (9, 5)$.
Exercise
Is there a Heron triangle whose sides are in geometric progression?

5.5 Heron triangles with integer inradii

We determine all Heron triangles with a given positive integer \(r \) as inradius. This is equivalent to the solution of

\[
uvw = r^2(u + v + w)
\]

in positive integers \(u, v, w \). We shall assume \(u \geq v \geq w \) (so that \(A \leq B \leq C \)). The Heron triangle in question has sides \(a = v + w \), \(b = w + u \), and \(c = u + v \). We shall distinguish between three cases. In each case, we find appropriate bounds for \(v \) and \(w \) to determine if the corresponding \(u \) is an integer.

Proposition 5.2.

1. For obtuse Heron triangles with given inradius \(r \), it is enough to check if

\[
u = \frac{r^2(v + w)}{vw - r^2}
\]

is an integer for \(w < r \) and \(\frac{r^2}{w} < v < \frac{r(r + \sqrt{r^2 + w^2})}{w} \).

2. For acute Heron triangles with given inradius \(r \), it is enough to check if \(u \) given by (5.4) is integer for

\[
w < \sqrt{3}r \quad \text{and} \quad w \leq v \leq (\sqrt{2} + 1)r.
\]

3. For Pythagorean triangles with given inradius \(r \), it is enough to check if \(u = \frac{r(v + r)}{v - r} \) is an integer for \(r < v < (\sqrt{2} + 1)r \).

Proof. The expression (5.4) follows easily from (5.3).

1. Since \(\frac{C}{2} \geq \frac{\pi}{3} \), \(w < r \). Clearly \(vw - r^2 > 0 \). From \(u = \frac{r^2(v + w)}{vw - r^2} \geq v \), we have, after clearing denominator, \(wv^2 - 2r^2v - r^2w < 0 \). Hence, \(\frac{r^2}{w} < v < \frac{r(r + \sqrt{r^2 + w^2})}{w} \).

2. If the triangle is acute angled, all \(u, v, w \) are greater than \(r \). Since \(\frac{C}{2} > \frac{\pi}{6} \), \(\frac{r}{w} > \tan \frac{\pi}{3} = \frac{1}{\sqrt{3}} \); we have \(w < \sqrt{3}r \). Also, \(\frac{r}{v} > \frac{\pi}{3} \). This means \(\frac{v}{r} > \sqrt{2} + 1 \) and \(v < (\sqrt{2} + 1)r \).

3. In the Pythagorean case, \(r = w \), so that (5.3) becomes \(uv = r(u + v + r) \), and \(u = \frac{r(v + r)}{v - r} \geq v \). By clearing denominator, \(r(v + r) \leq v(v - r) \), \(v^2 - 2rv - r^2 \leq 0 \), \((v - r)^2 \leq 2r^2 \), \(v < (\sqrt{2} + 1)r \). \(\square \)
Example 5.1. A Heron triangle is said to be perfect if its area is numerically equal to its perimeter. Equivalently, a perfect Heron triangle has inradius 2. Using Proposition 5.2 above,

(i) for obtuse triangles, we need only check $w = 1$, and $4 < v \leq 8$. For $v = 5, 6, 8$, the corresponding u is an integer. These give three obtuse Heron triangles.

<table>
<thead>
<tr>
<th>w</th>
<th>v</th>
<th>u</th>
<th>$(a, b, c; \triangle)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>24</td>
<td>(6, 25, 29; 60)</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>14</td>
<td>(7, 15, 20; 42)</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>9</td>
<td>(9, 10, 17; 36)</td>
</tr>
</tbody>
</table>

(ii) There is no acute Heron triangle with inradius 2. We need only check $w = 3$ and $v = 3, 4$.

(iii) The only Pythagorean triangles with inradius 2 are $(6, 8, 10; 24)$ and $(5, 12, 13; 30)$.

5.6 Impossibility of a Heron triangle with one side twice another

Is there a Heron triangle in which one side is twice another?\footnote{This is Problem 1193 of Crux Mathematicorum.} Consider a rational triangle with sides $t_1(t_2 + t_3), t_2(t_3 + t_1)$ and $t_3(t_1 + t_2)$, with t_1, t_2, t_3 satisfying $t_1t_2 + t_2t_3 + t_3t_1 = 1$. The condition $2 = \frac{t_1(t_2 + t_3)}{t_2(t_1 + t_3)}$ reduces to

$$t_1t_2^2 - 2(1 + t_1^2)t_2 + t_1 = 0.$$

This has rational solution in t_2 if and only if $(1 + t_1^2)^2 - t_1^2 = 1 + t_1^2 + t_1^4$ is the square of a rational number. Equivalently, writing $t_1 = \frac{y}{x}$, we have $x^4 + x^2y^2 + y^4 = \Box$. This is impossible by Theorem 4.4.
Appendix: Primitive Heron triangles with sides < 100

<table>
<thead>
<tr>
<th>(a, b, c, △)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3, 4, 5)</td>
<td>(5, 6, 12)</td>
<td>(5, 8, 12)</td>
<td>(5, 12, 13)</td>
<td>(10, 13, 16)</td>
</tr>
<tr>
<td>(4, 13, 15)</td>
<td>(13, 14, 15)</td>
<td>(10, 17, 17)</td>
<td>(8, 15, 17)</td>
<td>(16, 17, 17)</td>
</tr>
<tr>
<td>(11, 13, 20)</td>
<td>(7, 15, 20)</td>
<td>(10, 17, 21)</td>
<td>(13, 20, 21)</td>
<td>(13, 13, 24)</td>
</tr>
<tr>
<td>(12, 17, 25)</td>
<td>(7, 24, 25)</td>
<td>(14, 25, 25)</td>
<td>(12, 17, 26)</td>
<td>(13, 13, 24)</td>
</tr>
<tr>
<td>(17, 25, 28)</td>
<td>(20, 21, 29)</td>
<td>(6, 25, 29)</td>
<td>(17, 17, 30)</td>
<td>(11, 25, 30)</td>
</tr>
<tr>
<td>(5, 29, 30)</td>
<td>(8, 29, 35)</td>
<td>(15, 34, 35)</td>
<td>(25, 29, 36)</td>
<td>(19, 20, 37)</td>
</tr>
<tr>
<td>(15, 26, 37)</td>
<td>(13, 30, 37)</td>
<td>(12, 35, 37)</td>
<td>(24, 37, 37)</td>
<td>(16, 25, 39)</td>
</tr>
<tr>
<td>(17, 28, 39)</td>
<td>(25, 34, 39)</td>
<td>(10, 35, 39)</td>
<td>(29, 29, 40)</td>
<td>(13, 37, 40)</td>
</tr>
<tr>
<td>(25, 39, 40)</td>
<td>(15, 28, 41)</td>
<td>(9, 40, 41)</td>
<td>(17, 40, 41)</td>
<td>(18, 41, 41)</td>
</tr>
<tr>
<td>(29, 29, 42)</td>
<td>(15, 37, 44)</td>
<td>(17, 39, 44)</td>
<td>(13, 40, 45)</td>
<td>(25, 25, 48)</td>
</tr>
<tr>
<td>(29, 35, 48)</td>
<td>(21, 41, 50)</td>
<td>(39, 41, 50)</td>
<td>(26, 35, 51)</td>
<td>(20, 37, 51)</td>
</tr>
<tr>
<td>(25, 38, 51)</td>
<td>(13, 40, 51)</td>
<td>(27, 29, 52)</td>
<td>(25, 33, 52)</td>
<td>(37, 39, 52)</td>
</tr>
<tr>
<td>(15, 41, 52)</td>
<td>(5, 51, 52)</td>
<td>(25, 51, 52)</td>
<td>(24, 35, 53)</td>
<td>(28, 45, 53)</td>
</tr>
<tr>
<td>(4, 51, 53)</td>
<td>(51, 52, 126)</td>
<td>(51, 52, 126)</td>
<td>(26, 51, 55)</td>
<td>(20, 53, 55)</td>
</tr>
<tr>
<td>(53, 53, 126)</td>
<td>(33, 41, 58)</td>
<td>(41, 51, 58)</td>
<td>(17, 55, 60)</td>
<td>(15, 52, 61)</td>
</tr>
<tr>
<td>(11, 60, 61)</td>
<td>(22, 61, 66)</td>
<td>(25, 52, 63)</td>
<td>(33, 34, 65)</td>
<td>(20, 51, 65)</td>
</tr>
<tr>
<td>(12, 55, 65)</td>
<td>(33, 56, 92)</td>
<td>(14, 61, 65)</td>
<td>(36, 61, 65)</td>
<td>(16, 63, 65)</td>
</tr>
<tr>
<td>(32, 65, 100)</td>
<td>(35, 56, 92)</td>
<td>(65, 66, 184)</td>
<td>(21, 61, 68)</td>
<td>(43, 61, 129)</td>
</tr>
<tr>
<td>(7, 65, 100)</td>
<td>(29, 65, 100)</td>
<td>(57, 65, 187)</td>
<td>(29, 52, 69)</td>
<td>(37, 37, 40)</td>
</tr>
<tr>
<td>(29, 65, 100)</td>
<td>(41, 50, 73)</td>
<td>(26, 51, 73)</td>
<td>(35, 52, 73)</td>
<td>(48, 55, 73)</td>
</tr>
<tr>
<td>(9, 60, 73)</td>
<td>(41, 50, 73)</td>
<td>(25, 51, 74)</td>
<td>(25, 63, 74)</td>
<td>(35, 44, 75)</td>
</tr>
<tr>
<td>(19, 60, 73)</td>
<td>(50, 69, 73)</td>
<td>(34, 61, 75)</td>
<td>(56, 61, 75)</td>
<td>(13, 68, 75)</td>
</tr>
<tr>
<td>(29, 52, 75)</td>
<td>(32, 53, 75)</td>
<td>(25, 74, 77)</td>
<td>(68, 75, 77)</td>
<td>(41, 41, 80)</td>
</tr>
<tr>
<td>(52, 73, 75)</td>
<td>(40, 51, 77)</td>
<td>(39, 55, 82)</td>
<td>(35, 65, 82)</td>
<td>(33, 58, 85)</td>
</tr>
<tr>
<td>(17, 65, 80)</td>
<td>(9, 73, 80)</td>
<td>(41, 66, 85)</td>
<td>(36, 77, 85)</td>
<td>(13, 84, 85)</td>
</tr>
<tr>
<td>(29, 60, 85)</td>
<td>(39, 62, 111)</td>
<td>(26, 85, 109)</td>
<td>(34, 55, 87)</td>
<td>(52, 61, 87)</td>
</tr>
<tr>
<td>(41, 84, 168)</td>
<td>(44, 65, 138)</td>
<td>(31, 68, 73)</td>
<td>(61, 74, 87)</td>
<td>(65, 76, 87)</td>
</tr>
<tr>
<td>(38, 65, 114)</td>
<td>(65, 87, 204)</td>
<td>(41, 50, 89)</td>
<td>(28, 65, 94)</td>
<td>(39, 80, 95)</td>
</tr>
<tr>
<td>(53, 75, 190)</td>
<td>(57, 89, 228)</td>
<td>(78, 89, 228)</td>
<td>(53, 90, 126)</td>
<td>(17, 89, 90)</td>
</tr>
<tr>
<td>(21, 82, 91)</td>
<td>(60, 73, 126)</td>
<td>(26, 75, 91)</td>
<td>(22, 85, 91)</td>
<td>(48, 85, 91)</td>
</tr>
<tr>
<td>(37, 72, 91)</td>
<td>(39, 85, 92)</td>
<td>(34, 65, 93)</td>
<td>(39, 58, 95)</td>
<td>(41, 60, 95)</td>
</tr>
<tr>
<td>(29, 75, 92)</td>
<td>(73, 73, 96)</td>
<td>(37, 91, 96)</td>
<td>(51, 52, 97)</td>
<td>(65, 72, 97)</td>
</tr>
<tr>
<td>(68, 87, 285)</td>
<td>(44, 75, 97)</td>
<td>(35, 78, 97)</td>
<td>(75, 86, 97)</td>
<td>(11, 90, 97)</td>
</tr>
</tbody>
</table>
Chapter 6

Sums of two and four squares

6.1 Euler’s proof of Fermat’s two-square theorem

Theorem 6.1. Let \(p \) be an odd prime. \(p \) is a sum of two squares if and only if \(p \equiv 1 \pmod{4} \). In this case, the expression is unique.

Proof. Since \(p \equiv 1 \pmod{4} \), the equation \(x^2 + y^2 = mp \) is solvable in integers for some \(m \). We want to show that the smallest possible value of \(m \) is 1. Note that we may choose \(|x|, |y| < \frac{p}{2} \) so that \(m < \frac{p}{2} \). If \(m \neq 1 \), it cannot divide both of \(x \) and \(y \), for otherwise \(m^2| x^2 + y^2 = mp \) and \(m|p \), contrary to \(m < \frac{p}{2} \). Now choose integers \(a \) and \(b \) such that \(x_1 = x - am \) and \(y_1 = y - bm \) satisfy \(|x_1|, |y_1| \leq \frac{m}{2} \). Note that \(x_1 \) and \(y_1 \) cannot be both zero, and

\[
0 < x_1^2 + y_1^2 \leq \frac{m^2}{2}.
\]

It follows that \(x_1^2 + y_1^2 = m'm \) for some \(m' \leq \frac{m}{2} < m \). Now,

\[
m^2m'p = (x^2 + y^2)(x_1^2 + y_1^2) = (xx_1 + yy_1)^2 + (xy_1 - yx_1)^2,
\]

and

\[
xx_1 + yy_1 = x(x - am) + y(y - bm) = (x^2 + y^2) - (ax + by)m = mX
\]
\[
xy_1 - yx_1 = x(y - bm) - y(x - am) = m(-bx + ay) = mY
\]

for some \(X \) and \(Y \). From this it follows that

\[
X^2 + Y^2 = m'p
\]

with \(m' < m \). By descent, we finally reach an equation \(x^2 + y^2 = p \).
Uniqueness: If \(p = a^2 + b^2 = x^2 + y^2 \), where \(a < b \) and \(x < y \) are all positive, then
\[
p^2 = (a^2 + b^2)(x^2 + y^2) = (ax + by)^2 + (ay - bx)^2 = (ax - by)^2 + (ay + bx)^2
\]
Note that
\[
(ax + by)(ay + bx) = ab(x^2 + y^2) + (a^2 + b^2)xy = p(ab + xy).
\]
This means that one of \(ax + by \) and \(ay + bx \) is divisible by \(p \). Since \(ax + by, ay + bx \leq p \), we must have \(ay - bx = 0 \) or \(ax - by = 0 \). In other words, \(\frac{x}{y} = \frac{a}{b} \) or \(\frac{y}{x} = \frac{b}{a} \). Indeed, \(\frac{x}{y} = \frac{a}{b} \). It follows that we must have \(x = a \) and \(y = b \).

6.2 Representation of integers as sums of two squares

We say that a representation \(n = x^2 + y^2 \) is primitive if \(\gcd(x, y) = 1 \).

Lemma 6.2. If \(n \) has a prime divisor \(q \equiv 3 \pmod{4} \), then it does not have a primitive representation.

Proof. Suppose to the contrary that \(n = x^2 + y^2 \) is a primitive representation. Since \(q \) divides \(n \), it does not divide any of \(x \) and \(y \). In the field \(\mathbb{Z}_q \), we write \(y = ax \) for some \(a \). This means that \(0 = x^2 + y^2 = x^2(1 + a^2) \).
Since \(x \neq 0 \), we have \(a^2 = -1 \) in \(\mathbb{Z}_q \), \(q \equiv 3 \mod{4} \), a contradiction.

Theorem 6.3.
\[
n = 2^a \prod_i p_i^{b_i} \prod_j q_j^{c_j}
\]
be the prime factorization of \(n \) in which the \(p \)'s and \(q \)'s are respectively primes of the form \(4k + 1 \) and \(4k + 3 \). The number \(n \) is expressible as a sum of two squares if and only if each of the exponents \(c_j \) is even.

Proof. (Sufficiency) Since \(2 = 1^2 + 1^2 \), and every \(p_i \) is a sum of two squares, if every \(c_j \) is even, by repeatedly using the composition formula
\[
(a^2 + b^2)(x^2 + y^2) = (ax + by)^2 + (ay - bx)^2
\]
we easily obtain \(n \) as a sum of two squares.

(Necessity) Let \(n \) be divisible by a prime \(q \equiv 3 \pmod{4} \), with highest power \(q^c \), \(c \) odd. Consider a representation \(n = x^2 + y^2 \), with \(\gcd(x, y) = d > 1 \). Let \(q^c \) be the highest power of \(q \) dividing \(d \). (Possibly, \(c = 0 \)). Write \(x = dX, y = dY \). Then \(\gcd(X, Y) = 1 \). Let \(N = X^2 + Y^2 \). The highest power of \(q \) dividing \(N \) is \(q^{c-2c} \). This is positive since \(c \) is odd, contradicting Lemma 6.2 above.
6.3 Lagrange’s proof of the four-square theorem

Theorem 6.4. Every positive integer can be represented as a sum of four squares of nonnegative integers.

Lemma 6.5 (4-square identity).

\[
(x_1^2 + x_2^2 + x_3^2 + x_4^2)(y_1^2 + y_2^2 + y_3^2 + y_4^2) = z_1^2 + z_2^2 + z_3^2 + z_4^2,
\]

where

\[
\begin{align*}
z_1 &= x_1y_1 + x_2y_2 + x_3y_3 + x_4y_4, \\
z_2 &= x_1y_2 - x_2y_1 + x_3y_4 - x_4y_3, \\
z_3 &= x_1y_3 - x_2y_4 - x_3y_1 + x_4y_2, \\
z_4 &= x_1y_4 + x_2y_3 - x_3y_2 - x_4y_1.
\end{align*}
\]

Therefore it is enough to prove Lagrange’s theorem for prime numbers.

Lemma 6.6. Let \(p \) be a prime number. There are integers \(x \) and \(y \) such that \(x^2 + y^2 + 1 \equiv 0 \pmod{p} \).

Proof. The set \(S := \{x^2 \in \mathbb{Z}_p : x \in \mathbb{Z}\} \) has exactly \(\frac{p+1}{2} \) elements; so does the set \(T := \{-(x^2 + 1) \in \mathbb{Z}_p : x \in \mathbb{Z}\} \). Now,

\[
|S \cap T| = |S| + |T| - |S \cup T| \geq \frac{p+1}{2} + \frac{p+1}{2} - p = 1.
\]

Therefore, there are integers \(x \) and \(y \) satisfying \(x^2 + y^2 + 1 \equiv 0 \pmod{p} \), i.e., \(x^2 + y^2 + 1 \equiv 0 \pmod{p} \).

6.3.1 Descent

Let \(p \) be a prime number. There are integers \(x \) and \(y \) such that \(x^2 + y^2 + 1 \) is divisible by \(p \). We write this in the form \(x_1^2 + x_2^2 + x_3^2 + x_4^2 = kp \) for some integer \(k \). Clearly, we may assume \(|x_1|, |x_2|, |x_3|, |x_4| \leq \frac{p+1}{2} < \frac{p}{2} \).

This means \(kp < 4 \cdot \left(\frac{k}{2}\right)^2 = p^2 \) and \(k < p \). If \(k \neq 1 \), we shall show that \(x_1, x_2, x_3, x_4 \) can be replaced by another quadruple with a smaller \(k \). Then, by descent, we shall ultimately reach \(k = 1 \).
Suppose \(k \) is even. We may assume \(x_1 \equiv x_2 \pmod{2} \) and \(x_3 \equiv x_4 \pmod{2} \). Then
\[
\left(\frac{x_1 + x_2}{2} \right)^2 + \left(\frac{x_1 - x_2}{2} \right)^2 + \left(\frac{x_3 + x_4}{2} \right)^2 + \left(\frac{x_3 - x_4}{2} \right)^2
= \frac{x_1^2 + x_2^2 + x_3^2 + x_4^2}{2}
= \frac{k}{2} \cdot p
\]
with a smaller multiplier for \(p \).

Suppose \(k \) is odd. For \(i = 1, 2, 3, 4 \), choose \(y_i \equiv x_i \) with \(|y_i| < \frac{k}{2} \). Note that \(y_1^2 + y_2^2 + y_3^2 + y_4^2 \equiv x_1^2 + x_2^2 + x_3^2 + x_4^2 \pmod{k} \). Write \(y_1^2 + y_2^2 + y_3^2 + y_4^2 = kq \) for some \(q < k \). Note that \(q \) must be nonzero. \(^1\)

Apply the four-square identity to the two quadruples \(x_i \) and \(y_i \). The left hand side is \((kp)(kq) = k^2pq \). On the right hand side, \(z_2, z_3, z_4 \) are clearly divisible by \(k \); so is \(z_1 \) because \(z_1 = x_1y_1 + x_2y_2 + x_3y_3 + x_4y_4 \equiv x_1^2 + x_2^2 + x_3^2 + x_4^2 \equiv 0 \pmod{k} \). Writing \(z_i = kw_i \) for \(i = 1, 2, 3, 4 \), we have, from the 4-square identity, \(w_1^2 + w_2^2 + w_3^2 + w_4^2 = qp \) for \(q < k \).

\(^1\)
Chapter 7

Finite continued fractions

7.1 Euler’s function for the convergents of a continued fraction

Given two positive integers \(a > b \), the gcd can be computed by successive divisions. More precisely, we form two sequences

\[r_0, r_1, r_2, \ldots, r_k, \ldots \]

and

\[q_1, q_2, \ldots, q_k, \]

by the following rules

(i) \(r_0 = a \) and \(r_1 = b \);
(ii) \(q_k = \lfloor \frac{r_{k-1}}{r_k} \rfloor \);
(iii) \(r_{k+1} = r_{k-1} - q_k r_k \).

The sequence \(r_k \) eventually decreases to 0. If \(r_{n+1} = 0 \), then \(r_n \) is the gcd of \(a \) and \(b \). We call the sequence \((r_k) \) the euclidean algorithm sequence of \(a \) and \(b \).

Like the sequence \(r_k \), we use the same recurrence relations to generate two sequences \(s_k \) and \(t_k \), using the same \(q_k \) but with different initial values

(iv) \(s_0 = 1, s_1 = 0 \);
(v) \(t_0 = 0, t_1 = 1 \).

It is clear that \(r_k = a s_k + b t_k \) for each \(k \).

Proposition 7.1. (1) \(r_k = a s_k + b t_k \) for every \(k \). In particular, \(b t_k \equiv r_k \pmod{a} \).
(2) The sequences \((s_k)\) and \((t_k)\) are alternating in sign. More precisely,
\[
s_k = (-1)^k |s_k| \quad \text{and} \quad t_k = (-1)^{k+1} |t_k|,
\]
for \(k = 0, 1, 2, \ldots, n + 1.\)

(3) The sequences \(|s_k|\) and \(|t_k|\) satisfy
\[
|s_{k+1}| = |s_{k-1}| + q_k |s_k|, \quad |t_{k+1}| = |t_{k-1}| + q_k |t_k|.
\]

(4) The sequence \(|t_k|\) is increasing. Consequently, the reversal of \(|t_k|\) is a euclidean algorithm sequence.

The euclidean algorithm sequence leads to the continued fraction expansion of the rational number \(\frac{a}{b}\). Since
\[
\frac{a}{b} = q_1 + \frac{1}{q_2 + \frac{1}{q_3 + \frac{1}{\ddots + \frac{1}{q_{n-1} + q_n}}}}
\]
For convenience, we shall write this continued fraction as
\[
[q_1, q_2, q_n \ldots, q_{n-1}, q_n].
\]

The convergents of the continued fraction \([q_1, q_2, \ldots, q_n]\) are
\[
[q_1] = \frac{q_1}{1},
[q_1, q_2] = \frac{q_1q_2 + 1}{q_2},
[q_1, q_2, q_3] = \frac{q_1q_2q_3 + q_1 + q_3}{q_2q_3 + 1},
[q_1, q_2, q_3, q_4] = \frac{q_1q_2q_3q_4 + q_1q_2 + q_1q_4 + q_2q_3 + 1}{q_2q_3q_4 + q_2 + q_4},
\]
\[
\vdots
\]
These convergents are given by
\[
[q_1, q_2, \ldots, q_k] = \frac{F(q_1, q_2, \ldots, q_k)}{F(q_2, \ldots, q_k)},
\]
7.2 Cornacchia’ algorithm for a prime as a sum of two squares

where F is the Euler function obtained in the following way:
$F(q_1, q_2, \ldots, q_k)$ is the sum $q_1 q_2 \cdots q_k$ and all products obtained by deleting pairs of consecutive factors, with the stipulation that if k is even, deleting all consecutive pairs leads to the empty product 1.

Note that

\[
F(q_1, q_2, \ldots, q_k) = F(q_k, \ldots, q_2, q_1);
\]

\[
F(q_1, q_2, \ldots, q_{k+1}) = F(q_1, q_2, \ldots, q_{k-1}) + q_{k+1}F(q_1, q_2, \ldots, q_k).
\]

In the euclidean algorithm sequence,

\[
r_k = F(q_{k+1}, q_{k+2}, \ldots, q_n),
\]

for $k = 0, 1, 2, \ldots, n$.

7.2 Cornacchia’ algorithm for a prime as a sum of two squares

Theorem 7.2 (Cornacchia). Let $p \equiv 1 \pmod{4}$ be a prime, and q the “smaller positive square root” of $-1 \pmod{p}$. If x and y are the first two remainders in the euclidean algorithm sequence of (p, q), then $p = x^2 + y^2$.

Proof. In the euclidean algorithm table for the pair $(a, b) = (p, q)$ (ending in n divisions), we make the following observations.

(1) n is even.
(2) The sequence $(|t_k|)$ is the reversal of (r_k); i.e., $|t_k| = r_{n+1-k}$ for every $k \leq n$.
(3) The sequence (q_k) is palindromic; i.e., $q_{n+1-k} = q_k$ for every $k \leq n$.
(4) $r_k^2 + t_k^2$ is divisible by p for every k.
(5) Let $n = 2m$. In the sequence $(r_k), r_m$ is the first term smaller than \sqrt{p}.

Clearly, $|t_{n+1}| = p$. Since $r_n = 1$, we have $qt_n \equiv 1 \pmod{p}$, and $t_n \equiv -q \pmod{p}$. It follows that $t_n = -q$ or $p - q$. The reversal of $(|t_k|)$ is a euclidean algorithm sequence ending in exactly n divisions (as the sequence (r_k)). If $|t_n| = p - x$, the sequence of division would be

\[
p, p - q, q, \ldots
\]

which would be longer than the division sequence of (p, q), a contradiction. Thus,
(1) \(n \) is even, and
(2) the reversal of sequence \(|t_k|\) is the euclidean algorithm sequence of \((p, q)\), which is exactly the sequence \((r_k)\).
(3) is an immediate consequence of (2).
(4) follows from \(qt_k \equiv r_k \mod p \). Squaring, we have \(r_k^2 \equiv q^2 t_k^2 \equiv -t_k^2 \mod p \), and \(r_k^2 + t_k^2 \equiv 0 \mod p \).
(5) Write \(n = 2m \). Note that \(r_m = F(q_{m+1}, q_{m+2}, \ldots, q_{2m}) \), and \(p = r_0 = F(q_1, q_2, \ldots, q_{2m}) \). Now,
\[
\frac{r_m^2}{r_m} = r_m \cdot r_m
= F(q_{m+1}, q_{m+2}, \ldots, q_{2m})F(q_{m+1}, q_{m+2}, \ldots, q_{2m})
= F(q_1, q_2, \ldots, q_m)F(q_{m+1}, q_{m+2}, \ldots, q_{2m}).
\]
It is clear that each term in the product is contained in \(F(q_1, q_2, \ldots, q_{2m}) \). This shows that \(r_m^2 < p \). On the other hand,
\[
\frac{r_{m-1}^2}{r_{m-1}} = r_{m-1} \cdot r_{m-1}
= F(q_{m}, q_{m+1}, q_{m+2}, \ldots, q_{2m})F(q_{m}, q_{m+1}, q_{m+2}, \ldots, q_{2m})
= F(q_{m+1}, q_{m}, q_{m-1}, \ldots, q_1)F(q_{m+1}, q_{m}, q_{m-2}, \ldots, q_{2m})
= F(q_1, q_2, \ldots, q_m, q_{m+1})F(q_{m}, q_{m+1}, q_{m+2}, \ldots, q_{2m}).
\]
Every product in \(F(q_1, q_2, \ldots, q_{2m}) \) is contained in this product. This shows that \(r_{m-1}^2 > p \).
Now, since \(r_m^2 + 2r_{m+1}^2 = r_m^2 + t_{m-1}^2 = r_m^2 + t_m^2 \) is divisible by \(p \), and \(r_{m+1} < r_m < \sqrt{p} \), the sum \(r_m^2 + r_{m+1}^2 \) being positive and smaller than \(2p \), must be \(p \). \(\square \)
Chapter 8

Quadratic Residues

Let $n > 1$ be a given positive integer, and $\gcd(a, n) = 1$. We say that $a \in \mathbb{Z}_n^*$ is a quadratic residue mod n if the congruence $x^2 \equiv a \mod n$ is solvable. Otherwise, a is called a quadratic nonresidue mod n.

1. If a and b are quadratic residues mod n, so is their product ab.

2. If a is a quadratic residue, and b a quadratic nonresidue mod n, then ab is a quadratic nonresidue mod n.

3. The product of two quadratic residues mod n is not necessarily a quadratic residue mod n. For example, in $\mathbb{Z}_{12}^* = \{1, 5, 7, 11\}$, only 1 is a quadratic residue; 5, 7, and 11 $\equiv 5 \cdot 7$ are all quadratic nonresidues.

Theorem 8.1. Let p be an odd prime. Exactly one half of the elements of \mathbb{Z}_p^* are quadratic residues.

Proof. Each quadratic residue modulo p is congruent to one of the following $\frac{1}{2}(p - 1)$ residues.

$$1^2, 2^2, \ldots, k^2, \ldots, \left(\frac{p - 1}{2}\right)^2.$$

We show that these residue classes are all distinct. For $1 \leq h < k \leq \frac{p - 1}{2}$, $h^2 \equiv k^2 \mod p$ if and only if $(k - h)(h + k)$ is divisible by p, this is impossible since each of $k - h$ and $h + k$ is smaller than p.

Corollary 8.2. If p is an odd prime, the product of two quadratic nonresidues is a quadratic residue.
Theorem 8.3. Let \(p \) be an odd prime. \(-1\) is a quadratic residue \(\text{mod} \ p \) if and only if \(p \equiv 1 \text{ mod } 4 \).

Proof. If \(x^2 \equiv -1 \text{ mod } p \), then \((-1)^{\frac{p-1}{2}} \equiv x^{p-1} \equiv 1 \text{ mod } p \) by Fermat’s little theorem. This means that \(\frac{p-1}{2} \) is even, and \(p \equiv 1 \text{ mod } 4 \).

Conversely, if \(p \equiv 1 \text{ mod } 4 \), the integer \(\frac{p-1}{2} \) is even. By Wilson’s theorem,

\[
\left(\frac{p-1}{2}\right)! = \prod_{i=1}^{\frac{p-1}{2}} j = \prod_{i=1}^{\frac{p-1}{2}} j (-j) \equiv \prod_{i=1}^{\frac{p-1}{2}} j (p-j) = (p-1)! \equiv -1 \text{ mod } p.
\]

The solutions of \(x^2 \equiv -1 \text{ mod } p \) are therefore \(x \equiv \pm \left(\frac{p-1}{2}\right)! \).

Here are the square roots of \(-1 \text{ mod } p \) for the first 20 primes of the form \(4k + 1 \):

<table>
<thead>
<tr>
<th>p</th>
<th>(\sqrt{-1})</th>
<th>p</th>
<th>(\sqrt{-1})</th>
<th>p</th>
<th>(\sqrt{-1})</th>
<th>p</th>
<th>(\sqrt{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>\pm 2</td>
<td>13</td>
<td>\pm 9</td>
<td>17</td>
<td>\pm 7</td>
<td>29</td>
<td>\pm 12</td>
</tr>
<tr>
<td>41</td>
<td>\pm 9</td>
<td>53</td>
<td>\pm 1310</td>
<td>61</td>
<td>\pm 11</td>
<td>73</td>
<td>\pm 27</td>
</tr>
<tr>
<td>97</td>
<td>\pm 22</td>
<td>101</td>
<td>\pm 10</td>
<td>109</td>
<td>\pm 33</td>
<td>113</td>
<td>\pm 15</td>
</tr>
<tr>
<td>149</td>
<td>\pm 44</td>
<td>157</td>
<td>\pm 28</td>
<td>173</td>
<td>\pm 80</td>
<td>181</td>
<td>\pm 19</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>p</th>
<th>(\sqrt{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>193</td>
<td>\pm 81</td>
</tr>
</tbody>
</table>

Theorem 8.4. There are infinitely many primes of the form \(4n + 1 \).

Proof. Suppose there are only finitely many primes \(p_1, p_2, \ldots, p_r \) of the form \(4n + 1 \). Consider the product

\[
P = (2p_1 p_2 \cdots p_r)^2 + 1.
\]

Note that \(P \equiv 1 \text{ mod } 4 \). Since \(P \) is greater than each of \(p_1, p_2, \ldots, p_r \), it cannot be prime, and so must have a prime factor \(p \) different from \(p_1, p_2, \ldots, p_r \). But then modulo \(p \), \(-1\) is a square. By Theorem 8.3, \(p \) must be of the form \(4n + 1 \), a contradiction.

In the table below we list, for primes \(< 40\), the quadratic residues and their square roots. It is understood that the square roots come in pairs. For example, the entry \((2,7)\) for the prime 47 should be interpreted as saying that the two solutions of the congruence \(x^2 \equiv 2 \text{ mod } 47 \) are \(x \equiv \pm 7 \text{ mod } 47 \). Also, for primes of the form \(p = 4n + 1 \), since \(-1\) is a quadratic residue modulo \(p \), we only list quadratic residues smaller than \(\frac{p}{2} \). Those greater than \(\frac{p}{2} \) can be found with the help of the square roots of \(-1\).
8.1 The Legendre symbol

Let p be an odd prime. For an integer a, we define the Legendre symbol

$$\left(\frac{a}{p} \right) := \begin{cases} +1, & \text{if } a \text{ is a quadratic residue mod } p, \\ -1, & \text{otherwise.} \end{cases}$$

Lemma 8.5. $\left(\frac{ab}{p} \right) = \left(\frac{a}{p} \right) \left(\frac{b}{p} \right)$.

Proof. This is equivalent to saying that modulo p, the product of two quadratic residues (respectively nonresidues) is a quadratic residue, and the product of a quadratic residue and a quadratic nonresidue is a quadratic nonresidue. \(\square\)

For an odd prime p, $\left(\frac{-1}{p} \right) = (-1)^{\frac{p-1}{2}}$. This is a restatement of Theorem 8.3 that -1 is a quadratic residue mod p if and only if $p \equiv 1 \pmod{4}$.

Theorem 8.6 (Euler). Let p be an odd prime. For each integer a not divisible by p,

$$\left(\frac{a}{p} \right) \equiv a^{\frac{p-1}{2}} \pmod{p}.$$

Proof. Suppose a is a quadratic nonresidue mod p. The mod p residues $1, 2, \ldots, p-1$ are partitioned into pairs satisfying $xy = a$. In this case,

$$(p - 1)! \equiv a^{\frac{p-1}{2}} \pmod{p}.$$
On the other hand, if \(a \) is a quadratic residue, with \(a \equiv k^2 \equiv (p - k)^2 \mod p \), apart from 0, \(\pm k \), the remaining \(p - 3 \) elements of \(\mathbb{Z}_p \) can be partitioned into pairs satisfying \(xy = a \).

\[
(p - 1)! \equiv k(p - k)a^{\frac{1}{2}(p-3)} \equiv -a^{\frac{1}{2}(p-1)} \mod p.
\]

Summarizing, we obtain

\[
(p - 1)! \equiv - \left(\frac{a}{p} \right) a^{\frac{1}{2}(p-1)} \mod p.
\]

Note that by putting \(a = 1 \), we obtain Wilson’s theorem: \((p - 1)! \equiv -1 \mod p \). By comparison, we obtain a formula for \(\left(\frac{a}{p} \right) \):

\[
\left(\frac{a}{p} \right) \equiv a^{\frac{1}{2}(p-1)} \mod p.
\]

\[\Box\]

Theorem 8.7 (Gauss’ Lemma). Let \(p \) be an odd prime, and \(a \) an integer not divisible by \(p \). Then \(\left(\frac{a}{p} \right) = (-1)^\mu \) where \(\mu \) is the number of residues among

\[a, \ 2a, \ 3a, \ldots, \ \frac{p-1}{2}a\]

falling in the range \(\frac{p}{2} < x < p \).

Proof. Every residue modulo \(p \) has a unique representative with least absolute value, namely, the one in the range \(-\frac{p-1}{2} \leq x \leq \frac{p-1}{2}\). The residues described in the statement of Gauss’ Lemma are precisely those whose representatives are negative. Now, among the representatives of the residues of

\[a, 2a, \ldots, \frac{p-1}{2}a,\]

say, there are \(\lambda \) positive ones,

\[r_1, r_2, \ldots, r_\lambda,\]

and \(\mu \) negative ones

\[-s_1, -s_2, \ldots, -s_\mu.\]

Here, \(\lambda + \mu = \frac{p-1}{2} \), and \(0 < r_i, s_j < \frac{p}{2} \).
Note that no two of the r’s are equal; similarly for the s’s. Suppose that $r_i = s_j$ for some indices i and j. This means

$$ha \equiv r_i \mod p; \quad ka \equiv -s_j \mod p$$

for some h, k in the range $0 < h, k < \frac{1}{2}(p - 1)$. Note that $(h + k)a \equiv 0 \mod p$. But this is a contradiction since $h + k < p - 1$ and p does not divide a. It follows that

$$r_1, r_2, \ldots, r_\lambda, s_1, s_2, \ldots, s_\mu$$

are a permutation of $1, 2, \ldots, \frac{1}{2}(p - 1)$. From this

$$a \cdot 2a \cdots \frac{p - 1}{2} a = (-1)^\mu 1 \cdot 2 \cdots \frac{p - 1}{2},$$

and $a^{\frac{1}{2}(p-1)} = (-1)^\mu$. By Theorem 8.6, $\left(\frac{a}{p}\right) = (-1)^\mu$. \hfill \Box

Example

Let $p = 19$ and $a = 5$. We consider the first 9 multiples of 5 mod 19. These are

5, 10, 15, 20 \equiv 1, 25 \equiv 6, 30 \equiv 11, 35 \equiv 16, 40 \equiv 2, 45 \equiv 7.

4 of these exceed 9, namely, 10, 15, 11, 16. It follows that $\left(\frac{5}{19}\right) = 1$; 5 is a quadratic residue mod 19. \footnote{Indeed 5 \equiv 9² mod 19.}

Theorem 8.8.

$$\left(\frac{2}{p}\right) = (-1)^{\frac{1}{4}(p+1)} = (-1)^{\frac{1}{4}(p^2+1)}.$$

Equivalently, $\left(\frac{2}{p}\right) = +1$ if and only if $p \equiv \pm 1 \mod 8$.

Proof. We need to see how many terms in the sequence

$$2 \cdot 1, \quad 2 \cdot 2, \quad 2 \cdot 3, \quad \ldots, \quad 2 \cdot \frac{p - 1}{2}$$

are in the range $\frac{k}{2} < x < p$. If $p = 4k + 1$, these are the numbers $2k + 2, \ldots, 4k$, and there are k of them. On the other hand, if $p = 4k + 3$, these are the numbers $2k + 2, \ldots, 4k + 2$, and there are $k + 1$ of them. In each case, the number of terms is $\left[\frac{1}{4}(p + 1)\right]$. \hfill \Box
Example

Square root of 2 mod \(p \) for the first 20 primes of the form \(8k \pm 1 \).

<table>
<thead>
<tr>
<th>(p)</th>
<th>(\sqrt{2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>6</td>
</tr>
<tr>
<td>47</td>
<td>12</td>
</tr>
<tr>
<td>97</td>
<td>38</td>
</tr>
<tr>
<td>151</td>
<td>13</td>
</tr>
</tbody>
</table>

8.2 The law of quadratic reciprocity

Theorem 8.9 (Law of quadratic reciprocity). Let \(p \) and \(q \) be distinct odd primes.

\[
\left(\frac{p}{q} \right) \left(\frac{q}{p} \right) = (-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}}.
\]

Equivalently, when at least one of \(p, q \equiv 1 \mod 4 \), \(p \) is a quadratic residue mod \(q \) if and only if \(q \) is a quadratic residue mod \(p \). \(^2\)

Proof. (1) Let \(a \) be an integer not divisible by \(p \). Suppose, as in the proof of Gauss’ Lemma above, of the residues \(a, 2a, \ldots, \frac{p-1}{2}a \), the positive least absolute value representatives are \(r_1, r_2, \ldots, r_\lambda \), and the negative ones are \(-s_1, -s_2, \ldots, -s_\mu \). The numbers \(a, 2a, \ldots, \frac{p-1}{2}a \) are a permutation of

\[
\left[\begin{array}{c}
\frac{h_i a}{p} \\
p + r_i
\end{array} \right], \quad i = 1, 2, \ldots, \lambda,
\]

and

\[
\left[\begin{array}{c}
\frac{k_j a}{p} \\
p + (p - s_j)
\end{array} \right], \quad j = 1, 2, \ldots, \mu,
\]

where \(h_1, \ldots, h_\lambda, k_1, \ldots, k_\mu \) are a permutation of \(1, 2, \ldots, \frac{p-1}{2} \). Consider

\(^2\)For \(p \equiv q \equiv 3 \mod 4 \), \(p \) is a quadratic residue mod \(q \) if and only if \(q \) is a quadratic nonresidue mod \(p \).
In particular, if a is odd, then

$$
\mu \equiv \frac{1}{2}(p-1) \sum_{m=1}^{p-1} \left\lfloor \frac{ma}{p} \right\rfloor \pmod{2},
$$

and by Gauss’ lemma,

$$
\left(\frac{a}{p} \right) \equiv (-1)^{\sum_{m=1}^{p-1} \left\lfloor \frac{ma}{p} \right\rfloor}.
$$

(2) Therefore, for distinct odd primes p and q, we have

$$
\left(\frac{q}{p} \right) = (-1)^{\sum_{m=1}^{p-1} \left\lfloor \frac{mq}{p} \right\rfloor},
$$

and

$$
\left(\frac{p}{q} \right) = (-1)^{\sum_{n=1}^{q-1} \left\lfloor \frac{np}{q} \right\rfloor}.
$$

(3) In the diagram above, we consider the lattice points (m, n) with $1 \leq m \leq \frac{p-1}{2}$ and $1 \leq n \leq \frac{q-1}{2}$. There are altogether $\frac{p-1}{2} \cdot \frac{q-1}{2}$ such points forming a rectangle. These points are separated by the line L of slope $\frac{q}{p}$ through the point $(0,0)$.

For each $m = 1, 2, \ldots, \frac{p-1}{2}$, the number of points in the vertical line under L is $\left\lfloor \frac{mq}{p} \right\rfloor$. Therefore, the total number of points under L is $\sum_{m=1}^{\frac{p-1}{2}} \left\lfloor \frac{mq}{p} \right\rfloor$. Similarly, the total number of points on the left side of L is $\sum_{n=1}^{\frac{q-1}{2}} \left\lfloor \frac{np}{q} \right\rfloor$. From these, we have
It follows that
\[
\left(\frac{p}{q}\right) \left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}}.
\]

The law of quadratic reciprocity can be recast into the following form:
\[
\left(\frac{p}{q}\right) = \begin{cases}
-\left(\frac{q}{p}\right), & \text{if } p \equiv q \equiv 3 \mod 4, \\
\left(\frac{p}{q}\right), & \text{otherwise.}
\end{cases}
\]

Examples

1. \(\left(\frac{59}{177}\right) = -\left(\frac{131}{99}\right) = -\left(\frac{125}{39}\right) = -\left(\frac{7}{17}\right) = -\left(\frac{13}{7}\right) = -\left(\frac{-1}{7}\right) = -(-1) = 1\).

2. \(\left(\frac{34}{97}\right) = \left(\frac{2}{97}\right) \left(\frac{17}{97}\right).\) Now, \(\left(\frac{2}{97}\right) = +1\) by Theorem 8.8, and
\[
\left(\frac{17}{97}\right) = \left(\frac{97}{17}\right) = \left(\frac{12}{17}\right) = \left(\frac{3}{17}\right) \left(\frac{4}{17}\right) = \left(\frac{3}{17}\right) = \left(\frac{3}{3}\right) = \left(\frac{2}{3}\right) = -1.
\]

3. For which primes \(p\) is 3 a quadratic residue?
\[
\left(\frac{3}{p}\right) = (-1)^{\frac{p-1}{2}} \left(\frac{p}{3}\right) = (-1)^{k+\frac{1}{2}(\epsilon-1)} = (-1)^k
\]

\[
\sum_{m=1}^{\frac{1}{2}(p-1)} \left\lfloor mq \right\rfloor + \sum_{n=1}^{\frac{1}{2}(q-1)} \left\lfloor np \right\rfloor = \frac{p-1}{2} \cdot \frac{q-1}{2}.
\]
provided \(p = 6k + \epsilon, \epsilon = \pm 1 \). This means 3 is a quadratic residue mod \(p \) if and only if \(k \) is even, i.e., \(p = 12m \pm 1 \).

8.3 Calculation of square roots modulo \(p \)

1. Let \(p \) be a prime of the form \(4k + 3 \). If \(\left(\frac{a}{p} \right) = 1 \), then the square roots of \(a \mod p \) are \(\pm a^{\frac{1}{2}(p+1)} \).

 Proof.

 \[
 \left(a^{\frac{1}{2}(p+1)} \right)^2 \equiv a^{\frac{1}{2}(p+1)} = a^{\frac{1}{2}(p-1)} \cdot a = \left(\frac{a}{p} \right) a = a \mod p.
 \]

2. Let \(p \) be a prime of the form \(8k + 5 \). If \(\left(\frac{a}{p} \right) = 1 \), then the square roots of \(a \mod p \) are

 - \(\pm a^{\frac{1}{2}(p+3)} \) if \(a^{\frac{1}{2}(p-1)} \equiv 1 \mod p \),
 - \(\pm 2^{\frac{1}{2}(p-1)} \cdot a^{\frac{1}{2}(p+3)} \) if \(a^{\frac{1}{2}(p-1)} \equiv -1 \mod p \).

 Proof. Note that

 \[
 \left(a^{\frac{1}{2}(p+3)} \right)^2 \equiv a^{\frac{1}{2}(p+3)} = a^{\frac{1}{2}(p-1)} \cdot a \mod p.
 \]

 Since \(\left(\frac{a}{p} \right) = a^{\frac{1}{2}(p-1)} \equiv 1 \mod p \), we have \(a^{\frac{1}{2}(p-1)} \equiv \pm 1 \mod p \).

 If \(a^{\frac{1}{2}(p-1)} \equiv 1 \mod p \), then this gives \(a^{\frac{1}{2}(p+3)} \) as a square root of \(a \mod p \).

 If \(a^{\frac{1}{2}(p-1)} \equiv -1 \mod p \), then we have

 \[
 a \equiv -\left(a^{\frac{1}{2}(p+3)} \right)^2 \equiv \left(\frac{y}{p} \right) \left(a^{\frac{1}{2}(p+3)} \right)^2 \equiv \left(y^{\frac{1}{2}(p-1)} a^{\frac{1}{2}(p+3)} \right)^2
 \]

 for any quadratic nonresidue \(y \mod p \). Since \(p \equiv 5 \mod 8 \), we may simply take \(y = 2 \).
Examples

1. Let $p = 23$. Clearly 2 is a quadratic residue mod 23. The square roots of 2 are $\pm 2^6 \equiv \pm 18 \equiv \mp 5 \mod 23$.

2. Let $p = 29$. Both 6 and 7 are quadratic residues mod 29. Since $7^7 \equiv 1 \mod 29$, the square root of 7 are $\pm 7^4 \equiv \pm 23 \equiv \mp 6 \mod 29$.

On the other hand, Since $6^7 \equiv -1 \mod 29$, the square roots of 6 are $\pm 2^7 \cdot 6^4 \equiv \pm 12 \cdot 20 \equiv \mp 8 \mod 29$.

Proposition 8.10. Let p be an odd prime and $p - 1 = 2^\lambda u$, u odd. Consider the congruence $x^2 \equiv a \pmod p$. Let b be any quadratic nonresidue mod p. Assume that $a^u \not\equiv \pm 1 \pmod p$, and that $\mu > 1$ is the smallest integer for which $(a^u)^{2\mu} \equiv -1 \pmod p$. If $\mu = \lambda - 1$, then the congruence has no solution. If $\mu \leq \lambda - 2$, then $a^u \equiv (b^u)^{2^\lambda - 2^\mu - 1}k$ for some odd number $k < 2^{\mu+1}$. The solutions of the congruence are

$$x \equiv \pm a^{\lambda(u+1)/2^\lambda - \mu - 1} \pmod p.$$

Example 8.1. Consider the congruence $x^2 \equiv 215 \pmod{257}$. Here $257 - 1 = 2^8 \cdot 1$. In the notation of the above theorem, $u = 1$. With $a = 215$, the order of $a^u = 215$ modulo 257 is 128:

$$215^2 \equiv 222; \quad 215^4 \equiv 197; \quad 215^8 \equiv 2; \quad 215^{16} \equiv 4; \quad 215^{32} \equiv 16; \quad 215^{64} \equiv 256 \equiv 1.$$

This means $\mu = 6$. Let $b = 3$, a quadratic nonresidue of 257. The successive powers of $b^u \equiv 3$ are, modulo 257,

$$3^2 \equiv 9; \quad 3^4 \equiv 81; \quad 3^8 \equiv 136; \quad 3^{16} \equiv 249; \quad 3^{32} \equiv 64; \quad 3^{64} \equiv 241; \quad 3^{128} \equiv 256 \equiv -1.$$

Now, $a^u = 215$ should be an odd power of $(b^u)^{2^\lambda - 2^\mu - 1} \equiv 3^2 \equiv 9$. In fact,

$$9^3 \equiv 729 \equiv 215 \pmod{257}.$$

This means $k = 3$. The solutions of the congruence are

$$x \equiv \pm 215 \cdot 3^{20(2^7-3)} \equiv \pm 215 \cdot 3^{125} \equiv \cdots \equiv \pm 230 \equiv 27 \pmod{257}.$$
8.4 Square roots modulo an odd prime power

The quadratic congruence \(x^2 \equiv 2 \pmod{7} \) clearly has solutions \(x \equiv \pm 3 \pmod{7} \). We want to solve the congruence \(x^2 \equiv 2 \pmod{7^2} \) by seeking a solution of the form \(x \equiv 3 + 7b \).

\[
2 \equiv (3 + 7b)^2 = 9 + (6b) \cdot 7 + b^2 \cdot 7^2 = 2 + (1 + 6b) \cdot 7 \pmod{7^2}
\]

Choose \(b \) so that \(1 + 6b \equiv 0 \pmod{7} \). This gives \(b \equiv 1 \pmod{7} \) and \(x \equiv 10 \pmod{7^2} \).

Exercise

1. Show that 9, 16, 23, 30, 37, 44 are all squares modulo 49. (Of course, it is clear for 9 and 16).

 Answer: Squares roots modulo 49:

\[
\begin{align*}
2 & \quad 9 & \quad 16 & \quad 23 & \quad 30 & \quad 37 & \quad 44 \\
10 & \quad 3 & \quad 45 & \quad 38 & \quad 31 & \quad 24 & \quad 17
\end{align*}
\]

(Note that these square roots form an arithmetic progression of common difference 42 mod 49).

2. Proceed to solve the congruences \(x^2 \equiv 2 \pmod{7^3} \) and \(x^2 \equiv 2 \pmod{7^4} \).

Proposition 8.11. Let \(p \) be an odd prime. Suppose \(x^2 \equiv a \pmod{p^k} \) has solution \(x \equiv c_k \pmod{p^k} \). Let \(\gamma \) be the multiplicative inverse of \(2c_1 \in \mathbb{Z}_p^\times \). Then with \(b_k \equiv \gamma \cdot \frac{a-c_k^2}{p^k} \pmod{p} \), we have a solution \(c_{k+1} = c_k + b_k p^k \pmod{p^{k+1}} \) of \(x^2 \equiv a \pmod{p^{k+1}} \).

Example 8.2. The solutions of the congruences \(x^2 \equiv 12345 \pmod{7^k} \) for \(k \leq 8 \) are as follows:

\[
\begin{array}{cccccccc}
k & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
x \pmod{7^k} & 2 & 37 & 37 & 380 & 5182 & 89217 & 677462 & 3148091
\end{array}
\]

The base 7 expansions of these solutions are \(x \equiv \pm 1235521052_7 \).
8.5 Square modulo 2^k

Here are the squares modulo 2^k, up to $k = 7$.

- $\mathbb{Z}_4 : 0, 1,$
- $\mathbb{Z}_8 : 4,$
- $\mathbb{Z}_{16} : 9,$
- $\mathbb{Z}_{32} : 16, 17, 25,$
- $\mathbb{Z}_{64} : 33, 36, 41, 49, 57,$
- $\mathbb{Z}_{128} : 64, 65, 68, 73, 81, 89, 97, 100, 105, 113, 121.$

It is easy to see that the analogue of Proposition 8.2.2 is no longer true. For example, 1 is clearly a square of \mathbb{Z}_4; but $5 = 1 + 4$ is not a square in \mathbb{Z}_8.

Suppose $c \in \mathbb{Z}_{2^k}$ is a square. Let h be the smallest integer such that $c = (a+2^h)^2$ for some $a \in \mathbb{Z}_{2^h-1}$. Since $c = (a+2^h)^2 = a^2 + 2^{h+1}a + 2^{2h}$, we must have $h + 1 < k$, and $h \leq k - 2$.

From this, we infer that 5 is not a square, and the squares in \mathbb{Z}_8 are 0, 1, 4. Also, apart from these, the squares in \mathbb{Z}_{16} are $4^2 = 0, 5^2 = 9, 6^2 = 4, 7^2 = 1$. This means that the squares in \mathbb{Z}_{16} are 0, 1, 4 and 9.

Proposition 8.12. Let $k \geq 3$. For every square $c \in \mathbb{Z}_{2^k}^\ast$, $c + 2^k$ is a square in $\mathbb{Z}_{2^{k+1}}^\ast$.

Proof. Clearly, if $c = 1$, $c + 2^k = 1 + 2^k = (1 + 2^{k-1})^2 \in \mathbb{Z}_{2^{k+1}}$. If $c \neq 1$, we write $c = (a + 2^h)^2$ for $1 \leq h \leq k - 2$ and $a \in \mathbb{Z}_{2^{h-3}}$. Then, $(a + 2^h + 2^{k-1})^2 = c + 2^h(a + 2^h) + 2^{2k-2}$. Since a is a unit, modulo 2^{k+1}, this is $c + 2^k$. \qed

Corollary 8.13. A residue given in binary expansion

$$a = (a_{k-1}a_{k-2}\cdots a_1a_0)_2,$$

is a quadratic residue mod 2^k if and only if on the right of the rightmost digit 1 there is an even number (possibly none) of zeros, and on its left there are at least two zeros.
Chapter 9

The ring of Gaussian integers

9.1 The ring $\mathbb{Z}[i]$

9.1.1 Norm and units

By the ring of Gaussian integers we mean

$$\mathbb{Z}[i] := \{a + bi : a, b \in \mathbb{Z}\}.$$

Each element of $\mathbb{Z}[i]$ is called a Gaussian integer. For $\alpha = a + bi$, we define the norm $N(\alpha) := a^2 + b^2 \in \mathbb{Z}$. One important property of the norm is its multiplicativity:

Lemma 9.1. For $\alpha, \beta \in \mathbb{Z}[i]$,

$$N(\alpha \beta) = N(\alpha)N(\beta).$$

A Gaussian integer α is a **unit** if it is invertible in \mathbb{Z}. If α is a unit with multiplicative inverse β, then $\alpha \beta = 1$ and $N(\alpha)N(\beta) = N(\alpha \beta) = N(1) = 1$. This means that $N(\alpha) = 1$ and $\alpha = \pm 1, \pm i$.

Proposition 9.2. The only units in $\mathbb{Z}[i]$ are ± 1 and $\pm i$.

9.1.2 Gaussian primes

Two Gaussian integers α and β are **associate** if $\alpha = \varepsilon \beta$ for some unit $\varepsilon \in \mathbb{Z}[i]$.

Exercise

1. Show that the relation of being associate is an equivalence relation on $\mathbb{Z}[i]$.
2. Show that 2 is not a prime in \(\mathbb{Z}[i] \).

A Gaussian integer \(\pi \in \mathbb{Z}[i] \) is prime if
(i) \(\pi \) is not a unit in \(\mathbb{Z}[i] \), and
(ii) \(\pi = \alpha \beta \in \mathbb{Z}[i] \Rightarrow \alpha \) or \(\beta \) is a unit in \(\mathbb{Z}[i] \).

Proposition 9.3. The ring of Gaussian integers satisfies the euclidean algorithm: for \(\alpha, \beta \in \mathbb{Z}[i] \) with \(\beta \neq 0 \), there are \(\gamma, \delta \in \mathbb{Z}[i] \) satisfying (i) \(\alpha = \beta \gamma + \delta \), (ii) \(N(\delta) < N(\beta) \).

Proof. Regarding \(\alpha \) and \(\beta \) as complex numbers, we have \(\frac{\alpha}{\beta} = x + iy \) for rational numbers \(x \) and \(y \). Let \(a \) and \(b \) be integers such that \(|x - a| \leq \frac{1}{2} \) and \(|y - b| \leq \frac{1}{2} \). The numbers \(\gamma := a + bi \) and \(\delta := \beta((x - a) + (y - b)i) \) satisfy \(\delta = \alpha - \beta \gamma \) and so is a Gaussian integer. Since
\[
\left| \frac{\delta}{\beta} \right|^2 = (x - a)^2 + (y - b)^2 \leq \frac{1}{4} + \frac{1}{4} = \frac{1}{2},
\]
we have \(N(\delta) < N(\beta) \).

Therefore, we have a notion of \(\gcd \) in \(\mathbb{Z}[i] \). The \(\gcd \) of two Gaussian integers is defined up to a unit.

Corollary 9.4. The ring of Gaussian integers is a Bézout domain: for \(\alpha, \beta \in \mathbb{Z}[i] \), there are \(\gamma, \delta \in \mathbb{Z}[i] \) such that
\[
\gcd(\alpha, \beta) = \alpha \gamma + \beta \delta.
\]

Proposition 9.5. The following two statements are equivalent. (i) \(\pi \in \mathbb{Z}[i] \) is a prime. (ii) \(\pi | \alpha \beta \in \mathbb{Z}[i] \Rightarrow \pi | \alpha \) or \(\pi | \beta \).

Theorem 9.6. The primes in \(\mathbb{Z}[i] \) are precisely
(i) the primes \(p \equiv 3 \pmod{4} \) in \(\mathbb{Z} \),
(ii) \(\pm 1 \pm i \) which have norm 2, and
(iii) \(a + bi \) for which \(a^2 + b^2 \) is an odd prime \(p \equiv 1 \pmod{4} \) in \(\mathbb{Z} \).

Corollary 9.7 (Unique factorization). Every nonzero Gaussian integer can be decomposed “uniquely” into a product of Gaussian primes: if
\[
\alpha = \pi_1 \cdots \pi_h = \psi_1 \cdots \psi_k
\]
for Gaussian primes \(\pi_1, \ldots, \pi_h \) and \(\psi_1, \ldots, \psi_k \), then (i) \(h = k \), (ii) after a suitable permutation of \(\psi_1, \ldots, \psi_k \), for \(i = 1, 2, \ldots, k \), the Gaussian primes \(\pi_i \) and \(\psi_i \) are associate.
9.2 An alternative proof of Fermat’s two-square theorem

Since \(p \equiv 1 \pmod{4} \), \(-1\) is a quadratic residue. This means that there exists an integer \(a \leq \frac{p-1}{2} \) such that \(a^2 + 1 \) is divisible by \(p \). Note that \(a^2 + 1 < p^2 \).

Regarded as Gaussian integers, \(a^2 + 1 = (a + i)(a - i) \). We claim that \(p \) does not divide \(a + i \) nor \(a - i \); otherwise, \(p^2 = N(p) \leq N(a + i) = a^2 + 1 < p^2 \), a contradiction. This means that \(p \) is not a prime in \(\mathbb{Z}[i] \) and there is a factorization of \(p = \alpha \beta \in \mathbb{Z}[i] \), in which none of \(\alpha, \beta \) is a unit, i.e., \(N(\alpha), N(\beta) > 1 \). It follows from

\[
p^2 = N(p) = N(\alpha)N(\beta)
\]

that \(N(\alpha) = N(\beta) = p \), and \(p \) is a sum of two squares of integers.
Chapter 10

Construction of indecomposable Heron triangles

10.1 Primitive Heron triangles

10.1.1 Rational triangles

Given a triangle ABC with sidelengths $BC = a$, $CA = b$ and $AB = c$, we let $s := \frac{1}{2}(a + b + c)$ be the semiperimeter, and

$$ t_1 = \tan \frac{A}{2}, \quad t_2 = \tan \frac{B}{2}, \quad t_3 = \tan \frac{C}{2}. $$

These satisfy

$$ t_1 t_2 + t_2 t_3 + t_3 t_1 = 1. \quad (10.1) $$

We shall assume throughout this chapter that all sidelengths of triangles are rational. Such a triangle is called a rational triangle if its area is
rational. Equivalently, t_1, t_2, t_3 are all rational numbers. Putting $t_i = \frac{n_i}{d_i}$, $i = 1, 2, 3$, with $\text{gcd}(n_i, d_i) = 1$, we rewrite (14.1) in the form

$$n_1n_2d_3 + n_1d_2n_3 + d_1n_2n_3 = d_1d_2d_3. \quad (10.2)$$

A rational triangle, under a suitable magnification, gives a primitive Heron triangle, one with integer sides which are relatively prime, and with integer area. In fact, by putting

$$a = n_1(d_2n_3 + n_2d_3),$$
$$b = n_2(d_3n_1 + n_3d_1),$$
$$c = n_3(d_1n_2 + n_1d_2), \quad (10.3)$$

we obtain a Heron triangle with semiperimeter $s = n_1n_2d_3 + n_1d_2n_3 + d_1n_2n_3 = d_1d_2d_3$ and area $\triangle = n_1n_2n_3d_3$. A primitive Heron triangle Γ_0 results by dividing by the sides by $g := \text{gcd}(a_1, a_2, a_3)$.

10.1.2 Triple of simplifying factors

Unless explicitly stated otherwise, whenever the three indices i, j, k appear altogether in an expression or an equation, they are taken as a permutation of the indices $1, 2, 3$.

Note that from (14.1) or (10.2), any one of t_i, t_j, t_k can be expressed in terms of the remaining two. In the process of expressing $t_i = \frac{n_i}{d_i}$ in terms of $t_j = \frac{n_j}{d_j}$ and $t_k = \frac{n_k}{d_k}$, we encounter certain “simplifying factors”, namely,

$$g_i := \text{gcd}(d_jd_k - n_jn_k, n_jd_k + d_jn_k),$$

so that

$$g_in_i = d_jd_k - n_jn_k,$$
$$g_id_i = d_jn_k + n_jd_k, \quad (10.4)$$

We shall call (g_1, g_2, g_3) the triple of simplifying factors for the numbers (t_1, t_2, t_3), or of the similarity class of triangles they define.

Example 10.1. For the $(13, 14, 15; 84)$, we have $t_1 = \frac{1}{2}$, $t_2 = \frac{4}{7}$ and $t_3 = \frac{2}{3}$. From

$$\frac{1 - t_2t_3}{t_2 + t_3} = \frac{7 \cdot 3 - 4 \cdot 2}{7 \cdot 2 + 4 \cdot 3} = \frac{13}{26} = \frac{1}{2},$$
it follows that $g_1 = 13$. Similarly, $g_2 = 1$ and $g_3 = 5$. On the other hand, for the indecomposable Heron triangle $(25, 34, 39; 420)$, we have $(t_1,t_2,t_3) = \left(\frac{5}{17}, \frac{4}{17}, \frac{6}{17}\right)$. The simplifying factors are $(g_1, g_2, g_3) = (5, 17, 13)$.

Example 10.2. For $(15, 34, 35; 252)$, the simplifying factors are $(g_1, g_2, g_3) = (5, 17, 5)$.

Exercise

For the sidelengths given in (10.3), we have

$$a = g_1n_1d_1, \quad b = g_2n_2d_2, \quad c = g_3n_3d_3.$$
(3) If a non-Pythagorean Heron triangle has two integer heights, then it cannot be primitive.

10.2 Gaussian integers

We shall associate with each positive rational number \(t = \frac{a}{d}, n, d \) relatively prime, the primitive, positive Gaussian integer \(z(t) := d + n\sqrt{-1} \in \mathbb{Z}[\sqrt{-1}] \). Here, we say that a Gaussian integer \(x + y\sqrt{-1} \) is

- **primitive** if \(x \) and \(y \) are relatively prime, and
- **positive** if both \(x \) and \(y \) are positive.

The norm of the Gaussian integer \(z = x + y\sqrt{-1} \) is the integer \(N(z) := x^2 + y^2 \). The norm in \(\mathbb{Z}[\sqrt{-1}] \) is **multiplicative**:

\[
N(z_1z_2) = N(z_1)N(z_2).
\]

The **argument** of a Gaussian integer \(z = x + y\sqrt{-1} \) is the unique real number \(\phi = \phi(z) \in [0, 2\pi) \) defined by

\[
\cos \phi = \frac{x}{\sqrt{x^2 + y^2}}, \quad \sin \phi = \frac{y}{\sqrt{x^2 + y^2}}.
\]

A Gaussian integer \(z \) is positive if and only if \(0 < \theta(z) < \frac{1}{2} \pi \). Each positive Gaussian integer \(z = x + y\sqrt{-1} \) has a complement

\[
z^* := y + x\sqrt{-1} = \sqrt{-1} \cdot \bar{z},
\]

where \(\bar{z} := x - y\sqrt{-1} \) is the conjugate of \(z \). Note that \(N(z^*) = N(z) \), and

\[
\phi(z) + \phi(z^*) = \frac{\pi}{2}. \tag{10.5}
\]

3Proof of (3). Let \((a, b, c; \triangle)\) be a Heron triangle, not containing any right angle. Suppose the heights on the sides \(b \) and \(c \) are integers. Clearly, \(b \) and \(c \) cannot be relatively prime, for otherwise, the heights of the triangle on these sides are respectively \(ch \) and \(bh \), for some integer \(h \). This is impossible since, the triangle not containing any right angle, the height on \(b \) must be less than \(c \). Suppose therefore \(\gcd(b, c) = g > 1 \). We write \(b = b'g \) and \(c = c'g \) for relatively prime integers \(b' \) and \(c' \). If the height on \(c \) is \(h \), then that on the side \(b \) is \(\frac{h}{c} = \frac{h}{c} \). If this is also an integer, then \(h \) must be divisible by \(b' \). Replacing \(h \) by \(b'h \), we may now assume that the heights on \(b \) and \(c \) are respectively \(c'h \) and \(b'h \). The side \(c \) is divided into \(b'k \) and \(\pm (c - b'k) \neq 0 \), where \(g^2 = h^2 + k^2 \). It follows that

\[
a^2 = (b'h)^2 + (c'g - b'k)^2 = b'^2(h^2 + k^2) + c'^2g^2 - 2b'c'gk = g^2(b'^2 + c'^2) - 2b'c'k.
\]

From this it follows that \(g \) divides \(a^2 \), and every prime divisor of \(g \) is a common divisor of \(a, b, c \). The Heron triangle cannot be primitive.
for each pair of complementary positive Gaussian integers.

Recall that the units of \(\mathbb{Z}[\sqrt{-1}] \) are precisely \(\pm 1 \) and \(\pm \sqrt{-1} \). An odd (rational) prime number \(p \) ramifies into two non-associate primes \(\pi(p) \) and \(\overline{\pi(p)} \) in \(\mathbb{Z}[\sqrt{-1}] \), namely, \(p = \pi(p)\overline{\pi(p)} \), if and only if \(p \equiv 1 \pmod{4} \). For applications in the present paper, we formulate the unique factorization theorem in \(\mathbb{Z}[\sqrt{-1}] \) as follows.

Proposition 10.2. Let \(g > 1 \) be an odd number. There is a primitive Gaussian integer \(\theta \) satisfying \(N(\theta) = g \) if and only if each prime divisor of \(g \) is congruent to 1 (mod 4).

10.2.1 Heron triangles and Gaussian integers

Consider the Heron triangle \(\Gamma := \Gamma(t_1, t_2, t_3) \) with sides given by (10.3). In terms of the Gaussian integers \(z_i := z(t_i) = d_i + n_i\sqrt{-1} \), the relations (10.4) can be rewritten as

\[
g_i z_i = \sqrt{-1} \cdot z_j z_k = (z_j z_k)^*.
\]

Lemma 10.3. \(N(z_i) = g_j g_k \).

Proof. From the relation (10.6), we have

\[
g_i^2 N(z_i) = N(z_j)N(z_k).
\]

Combining these, we have

\[
(g_i g_j g_k)^2 = N(z_i)N(z_j)N(z_k),
\]

and the result follows easily.

Proposition 10.4.

1. \(g_i \) is a common divisor of \(N(z_j) \) and \(N(z_k) \).
2. At least two of \(g_i, g_j, g_k \) exceed 1.
3. \(g_i \) is even if and only if all \(n_j, d_j, n_k \) and \(d_k \) are odd.
4. At most one of \(g_i, g_j, g_k \) is even, and none of them is divisible by 4.
5. \(g_i \) is prime to each of \(n_j, d_j, n_k, \) and \(d_k \).
6. Each odd prime divisor of \(g_i, i = 1, 2, 3 \), is congruent to 1 (mod 4).

Proof. (1) follows easily from Lemma 10.3.

(2) Suppose \(g_1 = g_2 = 1 \). Then, \(N(z_3) = 1 \), which is clearly impossible.

(3) is clear from the relation (10.4).
(4) Suppose g_i is even. Then n_j, d_j, n_k, d_k are all odd. This means that g_i, being a divisor of $N(z_j) = d_j^2 + n_j^2 \equiv 2 \pmod{4}$, is not divisible by 4. Also, $d_jd_k - n_jn_k$ and $n_jd_k + d_jn_k$ are both even, and
\[
(d_jd_k - n_jn_k) + (n_jd_k + d_jn_k)
\]
\[
= (d_j + n_j)(d_k + n_k) - 2n_jn_k
\]
\[
\equiv 2 \pmod{4},
\]
it follows that one of them is divisible by 4, and the other is 2 (mod 4).

After cancelling the common divisor 2, we see that exactly one of n_i and d_i is odd. This means, by (c), that g_j and g_k cannot be odd.

(5) If g_i and n_j admit a common prime divisor p, then p divides both n_j and $n_j^2 + d_j^2$, and hence d_j as well, contradicting the assumption that $d_j + n_j\sqrt{-1}$ be primitive.

(6) is a consequence of Proposition 10.2.

Proposition 10.5. $\gcd(g_1, g_2, g_3) = 1$.

Proof. We shall derive a contradiction by assuming a common rational prime divisor $p \equiv 1 \pmod{4}$ of g_i, g_j, g_k, with positive exponents r_i, r_j, r_k in their prime factorizations. By the relation (10.6), the product z_jz_k is divisible by the rational prime power p^{r_i}. This means that the primitive Gaussian integers z_j and z_k should contain in their prime factorizations powers of the distinct primes $\pi(p)$ and $\overline{\pi(p)}$. The same reasoning also applies to each of the pairs (z_k, z_i) and (z_i, z_j), so that z_k and z_i (respectively z_i and z_j) each contains one of the non-associate Gaussian primes $\pi(p)$ and $\overline{\pi(p)}$ in their factorizations. But then this means that z_j and z_k are divisible by the same Gaussian prime, a contradiction.

Corollary 10.6. If a, b, c are given as in (10.3), then
\[
\gcd(a, b, c) = \gcd(n_1d_1, n_2d_2, n_3d_3).
\]

Proof. This follows from the expressions (10.3): $a_i = g_in_id_i$, for $i = 1, 2, 3$, and Proposition 10.5.

Exercise

Prove that a Heron triangle is Pythagorean if and only if its triple of simplifying factors is of the form $(1, 2, g)$, for an odd number g whose prime divisors are all of the form $4m + 1$.
10.3 Orthocentric Quadrangles

Now we consider a rational triangle which does not contain a right angle. The vertices and the orthocenter form an orthocentric quadrangle, i.e., each of these four points is the orthocenter of the triangle with vertices at the remaining three points. If any of the four triangles is rational, then so are the remaining three. The convex hull of these four points is an acute-angled triangle Γ. We label the vertices $A, B, C,$ and the orthocenter in the interior by H and use the following notation for triangles:

$\Gamma = ABC$, $\Gamma_1 = HBC$, $\Gamma_2 = BHC$, $\Gamma_3 = ABH$.

Let t_1, t_2, t_3 be the tangents of the half angles of Γ, z_1, z_2, z_3 the associated Gaussian integers, and (g_1, g_2, g_3) the corresponding simplifying factors. Then the tangents of the half angles of Γ_k are

$$\begin{align*}
1 - t_i & = \frac{1}{1 + t_i}, \\
1 - t_j & = \frac{1}{1 + t_j}, \text{ and } \frac{1}{t_k}.
\end{align*}$$

We first assume that g_1, g_2, g_3 are all odd, so that for $i = 1, 2, 3$, d_i and n_i are of different parity, (Proposition 10.4(3)). The triangle Γ_k has associated primitive Gaussian integers

$$\begin{align*}
z_i' & = (d_i + n_i) + (d_i - n_i)\sqrt{-1} = (1 + \sqrt{-1})z_i, \\
z_j' & = (d_j + n_j) + (d_j - n_j)\sqrt{-1} = (1 + \sqrt{-1})z_j, \\
z_k' & = n_k + d_k\sqrt{-1} = \sqrt{-1} \cdot z_k.
\end{align*}$$

From these,

$$\begin{align*}
z_j'z_k' & = (1 + \sqrt{-1})\sqrt{-1} \cdot z_jz_k = g_i(1 + \sqrt{-1})z_i = g_i\sqrt{-1} \cdot z_i', \\
z_i'z_k' & = (1 + \sqrt{-1})\sqrt{-1} \cdot z_iz_k = g_j(1 + \sqrt{-1})z_j = g_j\sqrt{-1} \cdot z_j', \\
z_i'z_j' & = 2\sqrt{-1} \cdot z_iz_j = 2g_kz_k = 2g_k\sqrt{-1} \cdot z_k'.
\end{align*}$$

Thus, the triangle Γ_k has simplifying factors $(g_1, g_j, 2g_k)$.

Suppose now that one of the simplifying factors of Γ, say, g_k is even. Then n_i, d_i, n_j, d_j are all odd, and n_k, d_k have different parity. A similar calculation shows that the simplifying factors for the triangles Γ_i, Γ_j and Γ_k are $(2g_i, g_j, \frac{g_k}{2})$, $(g_i, 2g_j, \frac{g_k}{2})$, and $(g_i, g_j, \frac{g_k}{2})$ respectively.

We summarize these in the following proposition.

Proposition 10.7. The simplifying factors for the four (rational) triangles in an orthocentric quadrangle are of the form (g_1, g_2, g_3), $(2g_1, g_2, g_3)$, $(g_1, 2g_2, g_3)$ and $(g_1, g_2, 2g_3)$, with g_1, g_2, g_3 odd integers.
10.4 Indecomposable primitive Heron triangles

A routine computer search gives the following indecomposable, primitive Heron triangles with sides \(\leq 100 \), excluding Pythagorean triangles:

\[
\begin{array}{cccc}
(5, 29, 30; 72) & (10, 35, 39; 168) & (15, 40, 45; 252) & (17, 40, 41; 336) \\
(25, 34, 39; 420) & (5, 51, 52; 126) & (15, 52, 61; 336) & (20, 53, 55; 528) \\
(17, 55, 60; 462) & (26, 51, 73; 420) & (17, 65, 80; 288) & (29, 65, 68; 936) \\
(26, 75, 91; 840) & (34, 55, 87; 396) & (39, 55, 82; 924) & (35, 65, 82; 1092) \\
(26, 73, 97; 420) & (41, 60, 95; 798) & (39, 58, 95; 456) & (51, 52, 97; 840) \\
(17, 89, 90; 756) & (26, 73, 97; 420) & (41, 60, 95; 798) & (51, 52, 97; 840)
\end{array}
\]

We study the condition under which the primitive Heron triangle \(\Gamma_0 = \Gamma_0(t_1, t_2, t_3) \) constructed in §10.1.1 is indecomposable. Clearly, \(\Gamma_0 = \Gamma(t_1, t_2, t_3) \) is indecomposable if this is so for the triangle \(\Gamma \) defined by (10.3). More remarkable is the validity of the converse.

Theorem 10.8. A non-Pythagorean, primitive Heron triangle \(\Gamma_0 = \Gamma_0(t_1, t_2, t_3) \) is indecomposable if and only if each of the simplifying factors \(g_i, i = 1, 2, 3 \), contains an odd prime divisor.

Proof. We first prove the theorem for the triangle \(\Gamma := \Gamma(t_1, t_2, t_3) \) defined by (10.3).

Since \(\Gamma \) has area \(\Delta = n_1d_1n_2d_2n_3d_3 \), the height on the side \(a_i = g_in_id_i \) is given by

\[
h_i = \frac{2njd_jnkd_k}{g_i}.
\]

Since the triangle does not contain a right angle, it is indecomposable if and only if none of the heights \(h_i, i = 1, 2, 3 \), is an integer. By Proposition 8(d), this is the case if and only if each of \(g_1, g_2, g_3 \) contains an odd prime divisor.

To complete the proof, note that the sides (and hence also the heights) of \(\Gamma_0 \) are \(\frac{1}{2} \) times those of \(\Gamma \). Here, \(g := \gcd(a_1, a_2, a_3) = \gcd(n_1d_1, n_2d_2, n_3d_3) \) by Corollary 10.6. The heights of \(\Gamma_0 \) are therefore

\[
h'_i = \frac{2njd_jnkd_k}{g_i} = \frac{2}{g_i} \cdot \frac{njd_jnkd_k}{\gcd(n_1d_1, n_2d_2, n_3d_3)}.
\]

Note that \(\frac{njd_jnkd_k}{\gcd(n_1d_1, n_2d_2, n_3d_3)} \) is an integer prime to \(g_i \). If \(h'_i \) is not an integer, then \(g_i \) must contain an odd prime divisor, by Proposition 10.4(4) again.

Corollary 10.9. Let \(\Gamma \) be a primitive Heron triangle. Denote by \(\Gamma_i, i = 1, 2, 3 \), the primitive Heron triangles in the similarity classes of
the remaining three rational triangles in the orthocentric quadrangle containing Γ. The four triangles Γ and Γ_i, $i = 1, 2, 3$, are either all decomposable or all indecomposable.

Example 10.3. From the orthocentric quadrangle of each the indecomposable Heron triangles $(15, 34, 35; 252)$ and $(25, 34, 39; 420)$, we obtain three other indecomposable primitive Heron triangles.

$$
\begin{array}{ccc}
(a_1, b_1, c_1) & (g_1, g_2, g_3) & (a_1, b_1, c_1) \\
(15, 34, 35; 252) & (5, 17, 5) & (25, 34, 39; 420) & (5, 17, 13) \\
(55, 17, 60; 462) & (5, 17, 10) & (285; 187, 364; 26334) & (5, 17, 26) \\
(119, 65, 180; 1638) & (5, 17, 10) & (700, 561, 169; 30030) & (10, 17, 13) \\
(65, 408, 385; 12012) & (5, 34, 5) & (855, 952, 169; 62244) & (5, 34, 13)
\end{array}
$$

10.4.1 Construction of Heron triangles with given simplifying factors

Theorem 10.10. Let g_1, g_2, g_3 be odd numbers satisfying the following conditions.

(i) At least two of g_1, g_2, g_3 exceed 1.

(ii) The prime divisors of g_i, $i = 1, 2, 3$, are all congruent to 1 (mod 4).

(iii) $\gcd(g_1, g_2, g_3) = 1$.

Suppose g_1, g_2, g_3 together contain λ distinct rational (odd) prime divisors. Then there are $2^{\lambda-1}$ distinct, primitive Heron triangles with simplifying factors (g_1, g_2, g_3).

Proof. Suppose (g_1, g_2, g_3) satisfies these conditions. By (ii), there are primitive Gaussian integers θ_i, $i = 1, 2, 3$, such that $g_i = N(\theta_i)$. Since $\gcd(g_1, g_2, g_3) = 1$, if a rational prime $p \equiv 1 \pmod{4}$ divides g_i and g_j, then, in the ring $\mathbb{Z}[\sqrt{-1}]$, the prime factorizations of θ_i and θ_j contain powers of the same Gaussian prime π or $\bar{\pi}$.

Therefore, if g_1, g_2, g_3 together contain λ rational prime divisors, then there are 2^λ choices of the triple of primitive Gaussian integers $(\theta_1, \theta_2, \theta_3)$, corresponding to a choice between the Gaussian primes $\pi(p)$ and $\bar{\pi}(p)$ for each of these rational primes. Choose units ϵ_1 and ϵ_2 such that $z_1 = \epsilon_1 \theta_2 \theta_3$ and $z_2 = \epsilon_2 \theta_3 \bar{\theta}_1$ are positive.

Two positive Gaussian integers z_1 and z_2 define a positive Gaussian integer z_3 via (10.6) if and only if

$$0 < \phi(z_1) + \phi(z_2) < \frac{\pi}{2} \quad \text{(10.8)}$$
Since \(\phi(z_1^*) + \phi(z_2^*) = \pi - (\phi(z_1) + \phi(z_2)) \), it follows that exactly one of the two pairs \((z_1, z_2)\) and \((z_1^*, z_2^*)\) satisfies condition (10.8). There are, therefore, \(2^{\lambda-1}\) Heron triangles with \((g_1, g_2, g_3)\) as simplifying factors.

Making use of Theorems 10.8, 10.10, and Proposition 10.7, it is now easy to construct indecomposable primitive Heron triangles from any triples of odd integers \((g_1, g_2, g_3)\), each greater than 1, and satisfying the conditions of Theorem 10.10. For example, by choosing \(g_1, g_2, g_3\) from the first few primes of the form \(4k + 1\), we obtain the following primitive Heron triangles, all indecomposable:

<table>
<thead>
<tr>
<th>((g_1, g_2, g_3))</th>
<th>((d_1, n_1))</th>
<th>((d_2, n_2))</th>
<th>((d_3, n_3))</th>
<th>((a, b, c; \Delta))</th>
</tr>
</thead>
<tbody>
<tr>
<td>((5, 13, 17))</td>
<td>((14, 5, 7))</td>
<td>((7, 6))</td>
<td>((7, 4))</td>
<td>((25; 39, 34, 420))</td>
</tr>
<tr>
<td>((11, 10))</td>
<td>((9, 2))</td>
<td>((8, 1))</td>
<td></td>
<td>((175, 117, 238; 13860))</td>
</tr>
<tr>
<td>((5, 13, 29))</td>
<td>((4, 19))</td>
<td>((12, 1))</td>
<td>((8, 1))</td>
<td>((95, 39, 58; 456))</td>
</tr>
<tr>
<td>((16, 11))</td>
<td>((9, 2))</td>
<td>((7, 4))</td>
<td></td>
<td>((110, 117, 29; 1584))</td>
</tr>
<tr>
<td>((19, 4))</td>
<td>((8, 9))</td>
<td>((7, 4))</td>
<td></td>
<td>((95, 234, 203; 9576))</td>
</tr>
<tr>
<td>((5, 17, 29))</td>
<td>((22, 3))</td>
<td>((12, 1))</td>
<td>((2, 9))</td>
<td>((55, 34, 87; 396))</td>
</tr>
<tr>
<td>((18, 13))</td>
<td>((9, 2))</td>
<td>((9, 2))</td>
<td></td>
<td>((65, 68, 29; 936))</td>
</tr>
<tr>
<td>((18, 13))</td>
<td>((12, 1))</td>
<td>((6, 7))</td>
<td></td>
<td>((195, 34, 203; 5276))</td>
</tr>
<tr>
<td>((22, 3))</td>
<td>((9, 2))</td>
<td>((7, 6))</td>
<td></td>
<td>((55, 204, 203; 5244))</td>
</tr>
<tr>
<td>((13, 17, 29))</td>
<td>((22, 3))</td>
<td>((16, 11))</td>
<td>((10, 11))</td>
<td>((39, 136, 145; 2640))</td>
</tr>
<tr>
<td>((18, 13))</td>
<td>((19, 4))</td>
<td>((5, 14))</td>
<td></td>
<td>((429, 646, 1015; 87780))</td>
</tr>
<tr>
<td>((18, 13))</td>
<td>((16, 11))</td>
<td>((14, 5))</td>
<td></td>
<td>((1521, 1496, 1015; 720720))</td>
</tr>
</tbody>
</table>

Further examples can be obtained by considering the orthocentric quadrangle of each of these triangles.
Chapter 11

Infinite continued fractions

Associated with an infinite continued fraction \([q_0, q_1, q_2, q_3, \ldots, q_n, \ldots]\)
is a sequence of *convergents* which are finite continued fractions:

\[
\frac{P_k}{Q_k} = [q_0, q_1, \ldots, q_k].
\]

The numerators \(P_k\) and \(Q_k\) can be determined recursively as follows.

\[
P_k = P_{k-2} + q_k P_{k-1}, \quad P_{-2} = 0, \quad P_{-1} = 1,
\]

\[
Q_k = Q_{k-2} + q_k Q_{k-1}, \quad Q_{-2} = 1, \quad Q_{-1} = 0.
\]

Examples

1. The successive convergents of the continued fraction \([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]\)
are computed easily using these relations.

<table>
<thead>
<tr>
<th>(k)</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_k)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P_k)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>10</td>
<td>43</td>
<td>1393</td>
<td>9976</td>
<td>81201</td>
<td>740785</td>
<td>7489051</td>
<td></td>
</tr>
<tr>
<td>(Q_k)</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>30</td>
<td>157</td>
<td>972</td>
<td>6961</td>
<td>56660</td>
<td>516901</td>
<td>5225670</td>
</tr>
</tbody>
</table>

2. Here are the convergents of the continued fraction \([1, 2, 1, 3, 1, 4, 1, 5, 1, 6]\)
and their differences:

\[
\begin{array}{ccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline
1 & 2 & 1 & 3 & 1 & 5 & 1 & 9 & 1 & 13 & 1 & 17 \\
-1 & -1 & -1 & -1 & 1 & 3 & 1 & 5 & 1 & 7 & 1 & 9 \\
1 & 1 & 3 & 1 & 5 & 1 & 7 & 1 & 9 & 1 & 11 & 1 \\
\end{array}
\]

\[
\begin{array}{ccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline
1 & 2 & 1 & 3 & 1 & 5 & 1 & 9 & 1 & 13 & 1 & 17 \\
-1 & -1 & -1 & -1 & 1 & 3 & 1 & 5 & 1 & 7 & 1 & 9 \\
1 & 1 & 3 & 1 & 5 & 1 & 7 & 1 & 9 & 1 & 11 & 1 \\
\end{array}
\]

Note that the numerators of the differences are all \(\pm 1\).

Lemma 11.1. \(\frac{P_k}{Q_k} - \frac{P_{k-1}}{Q_{k-1}} = \frac{(-1)^{k-1}}{Q_{k-1}Q_k}\)
Proof. Write $\frac{P_k}{Q_k} - \frac{P_{k-1}}{Q_{k-1}} = \frac{-N_k}{Q_{k-1}Q_k}$. We have

\[
N_k = P_kQ_{k-1} - Q_kP_{k-1} = (P_{k-2} + q_kP_{k-1})Q_{k-1} - (Q_{k-2} + q_kQ_{k-1})P_{k-1} = -(P_{k-1}Q_{k-2} - Q_{k-1}P_{k-2}) = -N_{k-1}.
\]

Since $N_1 = 1$, we have by easy induction $N_k = (-1)^{k-1}N_1 = (-1)^{k-1}$, and the result follows.

Theorem 11.2. Let $q_0, q_1, \ldots, q_n, \ldots$ be an infinite sequence of positive integers, q_0 possibly zero. The infinite continued fraction

\[a := [q_0, q_1, q_2, \ldots, q_n, \ldots] \]

is always well defined, i.e., $\lim_{n \to \infty} [q_0, q_1, \ldots, q_n]$ exists. This limit is always an irrational number.

Proof. For each $n \geq 0$, let a_n be the n-th convergent $\frac{P_n}{Q_n}$. By the above lemma,

\[a_{n+2} - a_n = (a_{n+2} - a_{n+1}) + (a_{n+1} - a_n) = \frac{(-1)^{n+1}}{Q_{n+1}Q_n} + \frac{(-1)^n}{Q_nQ_{n-1}} = \frac{(-1)^n(Q_{n+1} - Q_{n-1})}{Q_{n-1}Q_nQ_{n+1}}. \]

Note that (Q_n) is an increasing sequence of positive integers, (this is clear from the recurrence relation for Q_n). It follows that a_0, a_2, a_4, \ldots is an increasing sequence, and a_1, a_3, a_5, \ldots is a decreasing sequence. Furthermore, each a_{2h+1} is greater than every a_{2k}:

\[a_0 < a_2 < a_4 < \cdots < a_{2k} < \cdots < a_{2h+1} < a_5 < a_3 < a_1. \]

It follows that the subsequences a_{2n} and a_{2n+1} are convergent; indeed, they converge to a common limit since

\[\lim_{n \to \infty} a_{2n+1} - \lim_{n \to \infty} a_{2n} = \lim_{n \to \infty} (a_{2n+1} - a_{2n}) = \lim_{n \to \infty} \frac{1}{Q_{2n}Q_{2n+1}} = 0 \]

since the sequence (Q_n) of positive integers is strictly increasing. The common limit a of these two subsequences is the infinite continued fraction $[q_0, q_1, \ldots, q_n, \ldots]$. This number a is irrational since its continued fraction expansion is not finite.
Let ζ be a real, irrational number. The continued fraction expansion of ζ can be found recursively as follows.

$$\zeta_0 = \zeta, \quad q_0 = [\zeta_0]; \quad \frac{1}{\zeta_{n+1}} = [\zeta_{n} - [\zeta_{n}]] = [\zeta_{n+1}].$$

Then,

$$\zeta = [q_0, q_1, q_2, \ldots, q_n, \ldots].$$

Theorem 11.3 (Lagrange). Let d be a nonsquare integer. The continued fraction expansion of a quadratic irrational of the form $a + b\sqrt{d}$, $a, b \in \mathbb{Q}$, is eventually periodic; i.e., there exist k and l such that in the expansion

$$a + b\sqrt{d} = [q_0, q_1, \ldots, q_n, \ldots],$$

$q_{k+l+i} = q_{k+i}$ for $n \geq 0$, $0 \leq i < l$.

Theorem 11.4. Let d be a rational number which is not a square. The continued fraction expansion of d is of the form

$$\sqrt{d} = [q_0, q_1, q_2, \ldots, q_2, q_1, 2q_0],$$

where $q_0 = [\sqrt{d}]$.

Examples

1. Continued fraction expansions of \sqrt{d}, $d < 50$. Those with asterisks have periods of odd lengths.

\[
\begin{align*}
\sqrt{2^*} &= [1, 2]; & \sqrt{27} &= [5, 5, 10]; \\
\sqrt{3} &= [1, 1, 2]; & \sqrt{28} &= [5, 3, 2, 10]; \\
\sqrt{5} &= [2, 4]; & \sqrt{29} &= [5, 2, 1, 2, 10]; \\
\sqrt{7} &= [2, 1, 1, 1, 4]; & \sqrt{30} &= [5, 2, 10]; \\
\sqrt{8} &= [2, 2]; & \sqrt{31} &= [5, 1, 1, 1, 1, 10]; \\
\sqrt{10^*} &= [3, 6]; & \sqrt{32} &= [5, 1, 1, 10]; \\
\sqrt{11} &= [3, 3, 6]; & \sqrt{33} &= [5, 1, 2, 1, 10]; \\
\sqrt{12} &= [3, 7, 6]; & \sqrt{34} &= [5, 1, 4, 1, 10]; \\
\sqrt{13^*} &= [3, 1, 1, 1, 6]; & \sqrt{35} &= [5, 1, 10]; \\
\sqrt{14^*} &= [3, 1, 2, 1, 6]; & \sqrt{37^*} &= [6, 12]; \\
\sqrt{15} &= [3, 6]; & \sqrt{38} &= [6, 6, 12]; \\
\sqrt{17^*} &= [4, 8]; & \sqrt{39} &= [6, 4, 12]; \\
\sqrt{18} &= [4, 2, 8]; & \sqrt{40} &= [6, 3, 12]; \\
\sqrt{19^*} &= [4, 7, 8]; & \sqrt{41^*} &= [6, 2, 1, 2, 12]; \\
\sqrt{20^*} &= [4, 2, 1, 3, 1, 2, 8]; & \sqrt{42} &= [6, 2, 12]; \\
\sqrt{21} &= [4, 1, 1, 2, 1, 8]; & \sqrt{43} &= [6, 1, 3, 1, 1, 5, 1, 12]; \\
\sqrt{22} &= [4, 1, 2, 4, 2, 1, 8]; & \sqrt{44} &= [6, 1, 1, 2, 1, 1, 1, 12]; \\
\sqrt{23^*} &= [4, 1, 3, 1, 8]; & \sqrt{45} &= [6, 1, 2, 2, 1, 12]; \\
\sqrt{24^*} &= [4, 1, 7, 8]; & \sqrt{46} &= [6, 1, 3, 1, 2, 6, 2, 1, 3, 1, 12]; \\
\sqrt{26^*} &= [5, 10]; & \sqrt{47} &= [6, 1, 6, 7, 12]; \\
\sqrt{27} &= [5, 5, 10]; & \sqrt{48} &= [6, 1, 12].
\end{align*}
\]
2. Some simple patterns:
\[
\sqrt{a^2 + 1} = [a, a, 2a]; \\
\sqrt{a^2 - 1} = [a - 1, 1, 2a - 2]; \\
\sqrt{a^2 + a} = [a, 2, 2a]; \\
\sqrt{a^2 + 2} = [a, a, 2a]; \\
\sqrt{a^2 - 2} = [a - 1, 1, a - 2, 1, 2a - 2].
\]

11.1 Lagrange’s Theorem

11.1.1 Purely periodic continued fractions.

Let \(\zeta \) be represented by a purely periodic continued fraction:
\[
\zeta = \left[q_0, q_1, \ldots, q_k\right].
\]
This means \(\zeta = [q_0, q_1, \ldots, q_k, \zeta] \). Let \(\frac{P_{k-1}}{Q_{k-1}} \) and \(\frac{P_k}{Q_k} \) be the last two convergents of the finite continued fraction \([q_0, q_1, \ldots, q_k] \). Then,
\[
\zeta = \frac{P_{k-1} + \zeta P_k}{Q_{k-1} + \zeta Q_k}.
\]
From this, we see that \(\zeta \) is a root of the quadratic equation
\[
Q_k x^2 - (P_k - Q_{k-1}) x - P_{k-1} = 0.
\]
Since the product of the two roots of this equation, being \(-\frac{P_{k-1}}{Q_k} \), is negative, exactly one of them is positive. This must be the number \(\zeta \), and it is clear that this is a number of the form \(a + b\sqrt{d} \), \(a, b \in \mathbb{Q} \). Here, \(d \) cannot be a square, for otherwise, the number \(\zeta \) would have been rational.

11.1.2 Eventually periodic continued fractions

It follows that a number with eventually periodic continued fraction expansion is also a quadratic irrationality. Consider
\[
\mu = [p_0, p_1, \ldots, p_h, q_1, \ldots, q_k].
\]
Let \(\zeta \) be the irrational number with purely periodic continued fraction expansion \([q_1, \ldots, q_k] \). This is of the form \(a + b\sqrt{d} \) according to §11.1.1. If \(h = 0 \), then
\[
\mu = [p_0, \zeta] = p_0 + \frac{1}{\zeta}
\]
is clearly of the form $a' + b' \sqrt{d}$, $a', b' \in \mathbb{Q}$. If $h \geq 1$, let \(\frac{P'}{Q'} \) and \(\frac{P}{Q} \) be the last two convergents of the continued fraction \([p_0, \ldots, p_h]\). Then

\[
\mu = [p_0, \ldots, p_h, \zeta] = \frac{P' + \zeta P}{Q' + \zeta Q}.
\]

This also is of the form $a' + b' \sqrt{d}$, $a', b' \in \mathbb{Q}$.

We have therefore proved the easier half of Lagrange theorem: every eventually periodic continued fraction represents a quadratic irrationality. The proof of the converse is more difficult, and requires a more detailed analysis of numbers with purely periodic continued fraction expansions.

11.1.3 Reduced quadratic irrationalities

Let $\zeta = [q_0, q_1, \ldots, q_k]$. It is the positive root of the quadratic equation

\[
x = [q_0, q_1, \ldots, q_k, x].
\]

Note that $q_0 - x = \frac{-1}{[q_1, \ldots, q_k, x]}$, and this can be rewritten as

\[
[q_0, \frac{-1}{x}] = \frac{-1}{[q_1, \ldots, q_k, x]}.
\]

Continuing, we obtain

\[
[q_k, q_{k-1}, \ldots, q_1, q_0, \frac{-1}{x}] = \frac{-1}{x}.
\]

This means ζ is the positive root of $x = [q_0, q_1, \ldots, q_k, x]$ if and only if \(\frac{-1}{\zeta} \) is the positive root of $y = [q_k, q_{k-1}, \ldots, q_0, y]$. Consequently, it follows that every equation of the form $x = [q_0, \ldots, q_k, x]$ has exactly one positive root $\zeta > 1$, and one negative root between -1 and 0. This negative root is necessarily the conjugate $\overline{\zeta}$. We shall say that a quadratic irrationality ζ is reduced if it satisfies the condition

\[
\zeta > 1 > 0 > \overline{\zeta} > -1.
\]

We may paraphrase the conclusion by saying that a purely periodic continued fraction represents a reduced quadratic irrationality.
11.1.4 Proof of Lagrange’s theorem

Consider now a general quadratic irrationality of the form

\[\zeta = \frac{P + \sqrt{d}}{Q}, \]

where \(P, Q \) and \(d \) are integers. By replacing \(P, Q \) and \(d \) by suitable integer multiples, we may assume that \(\frac{d - P^2}{Q} \) is an integer, and we shall work with this assumption, and write \(d = P^2 + QQ' \) for an integer \(Q' \).

Lemma 11.5. If the quadratic irrationality \(\zeta = \frac{P + \sqrt{d}}{Q} \) is reduced, then the integers \(P \) and \(Q \) are positive, and

\[P < \lfloor \sqrt{d} \rfloor, \quad Q < P + \sqrt{d} < 2\lfloor \sqrt{d} \rfloor. \]

Now, let \(\zeta = \frac{P + \sqrt{d}}{Q} \) be a quadratic irrationality with \(d - P^2 = QQ' \) for some integer \(Q' \). For every integer \(m \),

\[\frac{1}{\zeta - m} = \frac{Q}{P - mQ + \sqrt{d}} = \frac{Q(-P + mQ + \sqrt{d})}{d - (P - mQ)^2} = \frac{-P + mQ + \sqrt{d}}{Q' + 2mP - m^2Q}. \]

Note that in this expression,

\[d - (P + mQ)^2 = (d - P^2) + 2mPQ - m^2Q^2 = Q(Q' + 2mP - m^2Q). \]

It follows that we can obtain the continued fraction expansion of \(\zeta \) by working out

\[P_0 = P, \quad Q_0 = Q, \quad Q_{-1} = Q', \]

\[\zeta_k = \frac{P_k + \sqrt{d}}{Q_k}, \quad q_k = [\zeta_k], \]

\[P_{k+1} = -P_k + q_kQ_k, \]

\[Q_{k+1} = Q_{k-1} + 2q_kP_k - q_k^2Q_k = \frac{d - P_{k+1}^2}{Q_k}. \]

Note that \(\zeta = [q_0, \ldots, q_{n-1}, \zeta_n] \). In particular,

\[\zeta = \frac{P_{n-2} + \zeta_nP_{n-1}}{Q_{n-2} + \zeta_nQ_{n-1}}. \]
Consider the conjugate

\[\zeta = \frac{P_{n-2} + \overline{P_{n-1}}}{Q_{n-2} + \overline{Q_{n-1}}}. \]

From this,

\[\overline{\zeta_n} = -\frac{Q_{n-2}\zeta - P_{n-2}}{Q_{n-1}\zeta - P_{n-1}} = -\frac{Q_{n-2}}{Q_{n-1}} \cdot \frac{\zeta - \overline{P_{n-2}}}{\zeta - \overline{Q_{n-1}}}. \]

Since the sequence \(\frac{P_n}{Q_n} \) converges to \(\zeta \), we can choose \(N \) large enough so that \(\zeta_N \) lies between \(-1\) and 0. In other words, \(\zeta_N \) is reduced.

It follows as a consequence of this observation that in the construction of the continued fraction expansion of \(\zeta \) above, all \(\zeta_n, n \geq N \), are reduced. By Lemma 11.5, we have

\[0 < P_n < \sqrt{d}, \quad 0 < Q_n < 2\sqrt{d}, \quad \text{for every } n \geq N. \]

There must exist distinct integers \(h, k \geq N \) such that

\[P_h = P_k, \quad Q_h = Q_k. \]

If we choose \(h \) and \(k = h + r \) to be the smallest possible integers for which these hold, then for every integer \(t \geq 0 \) and \(0 \leq s < r \),

\[P_{h+tr+s} = P_{h+s}, \quad Q_{h+tr+s} = Q_{h+s}. \]

From this,

\[q_{h+tr+s} = q_{h+s}. \]

This completes the proof of Lagrange’s theorem.

Corollary 11.6. The continued fraction expansion of a reduced quadratic irrationality is purely periodic.

Proof. It is enough to show that if \(\zeta = [q_0, q_1, \ldots, q_r] \) is reduced, then indeed, \(q_0 = q_r \). (The general case follows by induction). Let \(\theta = [q_1, \ldots, q_r] \). Since \(q_0 + \frac{1}{\theta} \) is reduced,

\[q_0 + \frac{1}{\theta} > 1 > 0 > q_0 + \frac{1}{\theta} > -1. \]

From this, \(q_0 = [-\frac{1}{\theta}] \). However, \(-\frac{1}{\theta}\) has continued fraction expansion \([q_r, \ldots, q_1]\). It follows that \(q_r = q_0 \). \(\square \)
Exercise

1. If x is reduced, then so is $\frac{1}{x - \lfloor x \rfloor}$.

2. If a quadratic irrationality $\zeta > 1$ satisfies $\zeta < -1$, then the continued fraction expansion of ζ has one single term before the period.\(^1\)

\(^1\)Solution. There is a positive integer c such that $c + \zeta$ lies between -1 and 0. In other words, $c + \zeta$ is reduced, and has periodic continued fraction expansion $[q_0, \ldots, q_r]$. Then,

$$
\zeta = [q_1 - c, q_2, \ldots, q_r, q_r].
$$
Chapter 12

The Pell Equation

12.1 The equation $x^2 - dy^2 = 1$

Let d be a fixed integer. We consider the Pell equation $x^2 - dy^2 = 1$. Clearly, if d is negative or is a (positive) square integer, then the equation has only finitely many solutions.

Theorem 12.1. Let d be a nonsquare, positive integer. The totality of positive solutions of the Pell equation $x^2 - dy^2 = 1$ form an infinite sequence (x_n, y_n) defined recursively by

$$
\begin{align*}
 x_{n+1} &= ax_n + dby_n, \\
 y_{n+1} &= bx_n + ay_n; \\
 x_1 &= a, \\ y_1 &= b,
\end{align*}
$$

where $(x_1, y_1) = (a, b)$ is the fundamental solution (with a, b smallest possible) obtained from the continued fraction expansion

$$
\sqrt{d} = [q_0, q_1, \ldots, q_k],
$$

as follows. Let $\frac{P_{k-1}}{Q_{k-1}}$ the $(k-1)$-th convergent of \sqrt{d}.

(a). If the length of the period is even, then $(a, b) = (P_{k-1}, Q_{k-1})$ is the smallest positive solution of the Pell equation $x^2 - dy^2 = 1$.

(b). If the length of the period is odd, then the smallest positive solution of the equation $x^2 - dy^2 = 1$ is $(a, b) = (P_{k-1}^2 + dQ_{k-1}^2, 2P_{k-1}Q_{k-1})$.

Examples

1. The fundamental solution of the Pell equation $x^2 - 2y^2 = 1$ is $(3, 2)$. This generates an infinite sequence of nonnegative solutions
The Pell Equation

\((x_n, y_n)\) defined by

\[\begin{align*}
x_{n+1} &= 3x_n + 4y_n, \\
y_{n+1} &= 2x_n + 3y_n;
\end{align*}\]

\(x_0 = 1, \ y_0 = 0.\)

The beginning terms are

<table>
<thead>
<tr>
<th>(n)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_n)</td>
<td>3</td>
<td>17</td>
<td>99</td>
<td>577</td>
<td>3363</td>
<td>19601</td>
<td>114243</td>
<td>665857</td>
<td>3880899</td>
<td>22619537</td>
</tr>
<tr>
<td>(y_n)</td>
<td>2</td>
<td>12</td>
<td>70</td>
<td>408</td>
<td>2378</td>
<td>13860</td>
<td>80782</td>
<td>470832</td>
<td>2744210</td>
<td>15994428</td>
</tr>
</tbody>
</table>

2. Fundamental solution \((a, b)\) of \(x^2 - dy^2 = 1\) for \(d < 100:\)

<table>
<thead>
<tr>
<th>(d)</th>
<th>(a)</th>
<th>(b)</th>
<th>(d)</th>
<th>(a)</th>
<th>(b)</th>
<th>(d)</th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>2</td>
<td>7</td>
<td>8</td>
<td>3</td>
<td>8</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>19</td>
<td>6</td>
<td>11</td>
<td>10</td>
<td>3</td>
<td>12</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>649</td>
<td>180</td>
<td>14</td>
<td>15</td>
<td>4</td>
<td>15</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>33</td>
<td>8</td>
<td>18</td>
<td>17</td>
<td>4</td>
<td>19</td>
<td>17</td>
<td>39</td>
</tr>
<tr>
<td>20</td>
<td>9</td>
<td>2</td>
<td>21</td>
<td>55</td>
<td>12</td>
<td>22</td>
<td>197</td>
<td>42</td>
</tr>
<tr>
<td>23</td>
<td>24</td>
<td>5</td>
<td>24</td>
<td>5</td>
<td>1</td>
<td>26</td>
<td>51</td>
<td>10</td>
</tr>
<tr>
<td>27</td>
<td>26</td>
<td>5</td>
<td>28</td>
<td>127</td>
<td>24</td>
<td>29</td>
<td>9801</td>
<td>1820</td>
</tr>
<tr>
<td>30</td>
<td>11</td>
<td>2</td>
<td>31</td>
<td>1520</td>
<td>273</td>
<td>32</td>
<td>17</td>
<td>3</td>
</tr>
<tr>
<td>33</td>
<td>23</td>
<td>4</td>
<td>34</td>
<td>35</td>
<td>6</td>
<td>35</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>37</td>
<td>73</td>
<td>12</td>
<td>38</td>
<td>37</td>
<td>6</td>
<td>39</td>
<td>25</td>
<td>4</td>
</tr>
<tr>
<td>40</td>
<td>19</td>
<td>3</td>
<td>41</td>
<td>2049</td>
<td>320</td>
<td>42</td>
<td>13</td>
<td>2</td>
</tr>
<tr>
<td>43</td>
<td>3482</td>
<td>531</td>
<td>44</td>
<td>199</td>
<td>30</td>
<td>45</td>
<td>161</td>
<td>24</td>
</tr>
<tr>
<td>46</td>
<td>24335</td>
<td>3588</td>
<td>47</td>
<td>48</td>
<td>7</td>
<td>48</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>50</td>
<td>99</td>
<td>14</td>
<td>51</td>
<td>50</td>
<td>7</td>
<td>52</td>
<td>649</td>
<td>90</td>
</tr>
<tr>
<td>53</td>
<td>66249</td>
<td>9100</td>
<td>54</td>
<td>485</td>
<td>66</td>
<td>55</td>
<td>89</td>
<td>12</td>
</tr>
<tr>
<td>56</td>
<td>15</td>
<td>2</td>
<td>57</td>
<td>151</td>
<td>20</td>
<td>58</td>
<td>19603</td>
<td>2574</td>
</tr>
<tr>
<td>59</td>
<td>530</td>
<td>69</td>
<td>60</td>
<td>31</td>
<td>4</td>
<td>61</td>
<td>1766319949</td>
<td>226153980</td>
</tr>
<tr>
<td>62</td>
<td>63</td>
<td>8</td>
<td>63</td>
<td>8</td>
<td>1</td>
<td>65</td>
<td>129</td>
<td>16</td>
</tr>
<tr>
<td>66</td>
<td>65</td>
<td>8</td>
<td>67</td>
<td>48842</td>
<td>5967</td>
<td>68</td>
<td>33</td>
<td>4</td>
</tr>
<tr>
<td>69</td>
<td>7775</td>
<td>936</td>
<td>70</td>
<td>251</td>
<td>30</td>
<td>71</td>
<td>3480</td>
<td>413</td>
</tr>
<tr>
<td>72</td>
<td>17</td>
<td>2</td>
<td>73</td>
<td>2281249</td>
<td>267000</td>
<td>74</td>
<td>3699</td>
<td>430</td>
</tr>
<tr>
<td>75</td>
<td>26</td>
<td>3</td>
<td>76</td>
<td>57799</td>
<td>6630</td>
<td>77</td>
<td>351</td>
<td>49</td>
</tr>
<tr>
<td>78</td>
<td>53</td>
<td>6</td>
<td>79</td>
<td>80</td>
<td>9</td>
<td>80</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>82</td>
<td>161</td>
<td>18</td>
<td>83</td>
<td>82</td>
<td>9</td>
<td>84</td>
<td>55</td>
<td>6</td>
</tr>
<tr>
<td>85</td>
<td>285769</td>
<td>30996</td>
<td>86</td>
<td>10405</td>
<td>1122</td>
<td>87</td>
<td>28</td>
<td>3</td>
</tr>
<tr>
<td>88</td>
<td>197</td>
<td>21</td>
<td>89</td>
<td>500001</td>
<td>53000</td>
<td>90</td>
<td>19</td>
<td>2</td>
</tr>
<tr>
<td>91</td>
<td>1574</td>
<td>165</td>
<td>92</td>
<td>1151</td>
<td>120</td>
<td>93</td>
<td>1215</td>
<td>1260</td>
</tr>
<tr>
<td>94</td>
<td>2143295</td>
<td>221064</td>
<td>95</td>
<td>39</td>
<td>4</td>
<td>96</td>
<td>49</td>
<td>5</td>
</tr>
<tr>
<td>97</td>
<td>6209633</td>
<td>6377352</td>
<td>98</td>
<td>99</td>
<td>10</td>
<td>99</td>
<td>10</td>
<td>1</td>
</tr>
</tbody>
</table>

3. Pell’s equations whose fundamental solutions are very large:

<table>
<thead>
<tr>
<th>(d)</th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>421</td>
<td>3879474045914926879468217167061449</td>
<td>189073995051839020880499780706260</td>
</tr>
<tr>
<td>541</td>
<td>37074533002386702880664559967005001</td>
<td>159395869721270110777187138775196900</td>
</tr>
<tr>
<td>601</td>
<td>3890281546249231420114780429</td>
<td>158687894210188830255625580</td>
</tr>
<tr>
<td>613</td>
<td>46401887584078728910994299849</td>
<td>1874154578431997880308784340</td>
</tr>
<tr>
<td>661</td>
<td>16421658242965910275055840472770471049</td>
<td>638728478116949861246791167518480580</td>
</tr>
<tr>
<td>673</td>
<td>476556835465395993032041249</td>
<td>183696788896587421609932600</td>
</tr>
<tr>
<td>769</td>
<td>5357818683888131095072398422301</td>
<td>1932078832590437271724455505160</td>
</tr>
<tr>
<td>919</td>
<td>4481603010937194151551263720</td>
<td>147834442396536759714499589</td>
</tr>
<tr>
<td>937</td>
<td>480664425002419995997113167233</td>
<td>1570196893641535389062192632</td>
</tr>
<tr>
<td>949</td>
<td>609622436806639069525576201</td>
<td>19789181715172430297140</td>
</tr>
<tr>
<td>991</td>
<td>37951640490968111930648014896080</td>
<td>120557357903315947442538767</td>
</tr>
</tbody>
</table>
4. The equation \(x^2 - 4729494y^2 = 1 \) arises from the famous *Cattle problem* of Archimedes, and has *smallest* positive solution

\[
\begin{align*}
x &= 109931986732829734979866232821433543901088049, \\
y &= 50549485234315033074477819735540408986340.
\end{align*}
\]

Exercise

1. Solve the Pell equations (a) \(x^2 + 3y^2 = 1 \); (b) \(x^2 - 4y^2 = 1 \) for integer solutions. \(^1\)

2. Find the 10 *smallest* nonnegative solutions of the Pell equation \(x^2 - 3y^2 = 1 \). \(^2\)

3. For a positive, *nonsquare* integer \(n \), let \((a_n, b_n)\) be the fundamental solution of the Pell equation \(x^2 - ny^2 = 1 \). If \(n \) is a square, set \(b_n = 0 \).

 (a) Show that every positive integer occurs infinitely often in the sequence \((b_n)\).

 (b) Determine all occurrences of \(p^k \), \(p \) prime, \(k > 0 \), in the sequence \((b_n)\).

4. Deduce that if \(p \) is a prime of the form \(4k + 1 \), then the continued fraction expansion of \(\sqrt{p} \) has *odd* period.

12.1.1

If \((a, b)\) is the *fundamental* solution of the Pell equation \(x^2 - dy^2 = 1 \), generating the infinite sequence of *nonnegative* solutions \((x_0, y_0) = (1, 0), (x_1, y_1) = (a, b), (x_2, y_2), \ldots, (x_n, y_n), \ldots, \) then

\[
x_{n+1} = 2ax_n - x_{n-1}; \quad y_{n+1} = 2ay_n - y_{n-1}.
\]

\(^1\)(a). \((x, y) = (\pm 1, 0)\); (b). \((x, y) = (\pm 1, 0)\).

\(^2\)\(n \quad x_n \quad y_n \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \quad 11 \quad \ldots \)
\[
\begin{array}{cccccccccccc}
1 & 2 & 7 & 26 & 97 & 362 & 1351 & 5042 & 18817 & 70226 & 262087 & 978122 & \ldots \\
1 & 4 & 15 & 56 & 209 & 780 & 2911 & 10864 & 40545 & 151316 & 564719 & \ldots \\
\end{array}
\]
12.2 The equation $x^2 - dy^2 = -1$

Indeed, if the length of the period of the continued fraction expansion of \sqrt{d} is odd, then (P_{k-1}, Q_{k-1}) is the \textit{smallest} positive solution of the equation

$$x^2 - dy^2 = -1.$$

Only when this period is odd does this equation have solutions.

Examples

1. Smallest positive solution (a, b) of $x^2 - dy^2 = -1$ for the first 24 values of d:

<table>
<thead>
<tr>
<th>d</th>
<th>a</th>
<th>b</th>
<th>d</th>
<th>a</th>
<th>b</th>
<th>d</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>10</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>18</td>
<td>5</td>
<td>17</td>
<td>4</td>
<td>1</td>
<td>26</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>29</td>
<td>70</td>
<td>13</td>
<td>37</td>
<td>6</td>
<td>1</td>
<td>41</td>
<td>32</td>
<td>5</td>
</tr>
<tr>
<td>50</td>
<td>7</td>
<td>1</td>
<td>53</td>
<td>182</td>
<td>25</td>
<td>58</td>
<td>99</td>
<td>13</td>
</tr>
<tr>
<td>61</td>
<td>29718</td>
<td>3805</td>
<td>65</td>
<td>8</td>
<td>1</td>
<td>73</td>
<td>1068</td>
<td>125</td>
</tr>
<tr>
<td>74</td>
<td>43</td>
<td>5</td>
<td>82</td>
<td>9</td>
<td>1</td>
<td>85</td>
<td>378</td>
<td>41</td>
</tr>
<tr>
<td>89</td>
<td>500</td>
<td>53</td>
<td>97</td>
<td>5604</td>
<td>569</td>
<td>101</td>
<td>10</td>
<td>1</td>
</tr>
</tbody>
</table>

2. If $p \equiv 1 \pmod{4}$ is prime, then the equation $x^2 - py^2 = -1$ is solvable.

Proof. Let (a, b) be the fundamental solution of $x^2 - py^2 = 1$. This means $a^2 - 1 = pb^2$. Note that a must be odd, for otherwise $a^2 - 1 \equiv -1 \pmod{4}$, but $pb^2 \equiv 1 \pmod{4}$, a contradiction. Consequently, $\gcd(a + 1, a - 1) = 2$, and we have

(i) $a + 1 = 2r^2, a - 1 = 2ps^2$, or

(ii) $a + 1 = 2pr^2, a - 1 = 2s^2$, for some nonnegative integers r and s.

In (i), we have $r^2 - ps^2 = 1$, with $r < a$, a contradiction since (a, b) is the \textit{smallest} positive solution of $x^2 - py^2 = 1$. It follows that (ii) holds, and we have $s^2 - pr^2 = -1$. \hfill \square

12.3 The equation $x^2 - dy^2 = c$

Let d be a \textit{nonsquare} integer, and c an integer other than $0, \pm 1$. Clearly, the equation

$$x^2 - dy^2 = c$$
12.3 The equation \(x^2 - dy^2 = c \)

is solvable only if \(d \) is a quadratic residue modulo \(c \) (Exercise). This condition, however, is not sufficient to guarantee existence of solutions. Consider the continued fraction expansion of \(\sqrt{d} \):

\[
\sqrt{d} = \left[q_0, q_1, \ldots, q_k \right],
\]

with the first \(k \) convergents

\[
\frac{P_i}{Q_i} = \left[q_0, q_1, \ldots, q_i \right], \quad i = 0, 1, 2, \ldots, k - 1.
\]

Theorem 12.2. If \(|c| < \sqrt{d} \), and \(x^2 - dy^2 = c \) is solvable, then \(c \) must be one of the numbers \(P_i^2 - dQ_i^2 \), \(i = 0, 1, 2, \ldots, k - 1 \).

Theorem 12.3. Let \(c > 1 \) be a positive integer:

(a) If the equation \(x^2 - dy^2 = c \) is solvable, it must have a fundamental solution \((u, v)\) in the range

\[
0 < |u| \leq \sqrt{\frac{1}{2} (a + 1)c}, \quad 0 \leq v \leq \frac{b}{\sqrt{2(a + 1)} \cdot \sqrt{c}}.
\]

Every solution appears in a doubly infinite sequence \((x_n, y_n)\)

\[
\begin{align*}
u_{n+1} &= au_n + dbv_n, \\
v_{n+1} &= bu_n + av_n, \quad u_1 = u, v_1 = v,
\end{align*}
\]

for some \((u, v)\) in the range above.

(b) Same conclusion for the equation \(x^2 - dy^2 = -c \), except that it must have a solution \((u, v)\) in the range

\[
0 \leq |u| \leq \sqrt{\frac{1}{2} (a - 1)c}, \quad 0 < v \leq \frac{b}{\sqrt{2(a - 1)} \cdot \sqrt{c}}.
\]

Example 12.1. Consider the equation \(x^2 - 23y^2 = 4 \cdot 11 \cdot 23 \). It is easy to see that \(x \) and \(y \) must be both even, and 23 divides \(x \). With \(x = 46h \), \(y = 2k \), we have \(23h^2 - k^2 = 11 \), or \(k^2 - 23h^2 = -11 \). The fundamental solution of \(x^2 - 23y^2 = 1 \) being \((a, b) = (24, 5)\), we need only find \(y \) in the range \(1 \leq h \leq 2 \) It is now easy to see that only \(h = 2 \) gives \(k = 9 \). From this we obtain \((x_1, y_1) = (92, 18)\). The other solutions are generated recursively by

\[
x_{n+1} = 24x_n + 115y_n, \quad y_{n+1} = 5x_n + 24y_n, \quad x_1 = 92, \; y_1 = 18.
\]

Here are the first 5 solutions.

<table>
<thead>
<tr>
<th>(n)</th>
<th>(x_n)</th>
<th>(y_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>92</td>
<td>18</td>
</tr>
<tr>
<td>2</td>
<td>4278</td>
<td>892</td>
</tr>
<tr>
<td>3</td>
<td>205252</td>
<td>42798</td>
</tr>
<tr>
<td>4</td>
<td>9847818</td>
<td>2053412</td>
</tr>
<tr>
<td>5</td>
<td>472490012</td>
<td>98520978</td>
</tr>
</tbody>
</table>
12.4 Applications

1. Which triangular numbers are squares? Suppose the k-th triangular number $T_k = \frac{1}{2}k(k + 1)$ is the square of n. $n^2 = \frac{1}{2}k(k + 1)$; $4k^2 + 4k + 1 = 8n^2 + 1; (2k + 1)^2 - 8n^2 = 1$. The smallest positive solution of the Pell equation $x^2 - 8y^2 = 1$ being $(3, 1)$, we have the solutions (k_i, n_i) of the equation given by

$$\begin{align*}
2k_{i+1} + 1 &= 3(2k_i + 1) + 8n_i, \\
n_{i+1} &= (2k_i + 1) + 3n_i, \quad k_0 = 1, \; n_0 = 1.
\end{align*}$$

This means

$$\begin{align*}
k_{i+1} &= 3k_i + 4n_i + 1, \\
n_{i+1} &= 2k_i + 3n_i + 1, \quad k_0 = 1, \; n_0 = 1.
\end{align*}$$

The beginning values of k and n are as follows.

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_i</td>
<td>1</td>
<td>8</td>
<td>49</td>
<td>288</td>
<td>1681</td>
<td>9800</td>
<td>57121</td>
<td>332928</td>
<td>1940449</td>
<td>11309768</td>
<td>65911816</td>
<td>...</td>
</tr>
<tr>
<td>n_i</td>
<td>1</td>
<td>6</td>
<td>35</td>
<td>204</td>
<td>1189</td>
<td>6930</td>
<td>40391</td>
<td>235416</td>
<td>1372105</td>
<td>7997214</td>
<td>46611179</td>
<td>...</td>
</tr>
</tbody>
</table>

2. Find all integers n so that the mean and the standard deviation of n consecutive integers are both integers.

If the mean of n consecutive integers is an integer, n must be odd. We may therefore assume the numbers to be $-m, -(m - 1), \ldots, -1, 0, 1, \ldots, m - 1, m$. The standard deviation of these number is $\sqrt{\frac{1}{3}m(m + 1)}$. For this to be an integer, we must have $\frac{1}{3}m(m + 1) = k^2$ for some integer k. $m^2 = m = 3k^2; n^2 = (2m + 1)^2 = 12k^2 + 1$. The smallest positive solution of the Pell equation $n^2 - 12k^2 = 1$ being $(7, 2)$, the solutions of this equations are given by (n_i, k_i), where

$$\begin{align*}
n_{i+1} &= 7n_i + 24k_i, \\
k_{i+1} &= 2n_i + 7k_i, \quad n_0 = 1, \; k_0 = 0.
\end{align*}$$

The beginning values of n and k are

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>n_i</td>
<td>7</td>
<td>97</td>
<td>1351</td>
<td>18817</td>
<td>262087</td>
<td>3650401</td>
<td>50843527</td>
<td>708428177</td>
<td>1000789780</td>
<td>14082780262</td>
<td>...</td>
</tr>
<tr>
<td>k_i</td>
<td>2</td>
<td>28</td>
<td>390</td>
<td>5432</td>
<td>75658</td>
<td>1053780</td>
<td>14677262</td>
<td>204427888</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
3. Find all Pythagorean triangles the lengths of whose two shorter sides differ by 1.

Let \(x \) and \(x + 1 \) be the two shorter sides of a Pythagorean triangle, with hypotenuse \(y \). Then \(y^2 = x^2 + (x + 1)^2 = 2x^2 + 2x + 1 \). From this, \(2y^2 = (2x + 1)^2 + 1 \). The equation with \(z = 2x + 1 \), this reduces to the Pell equation \(z^2 - 2y^2 = -1 \), which we know has solutions, with the minimal positive one \((1, 1) \), and the equation \(z^2 - 2y^2 = 1 \) has smallest positive solution \((3, 2) \). It follows that the solutions are given recursively by

\[
\begin{align*}
 z_{n+1} &= 3z_n + 4y_n, \\
 y_{n+1} &= 2z_n + 3y_n, \\
 z_0 &= 1, \ y_0 &= 1.
\end{align*}
\]

If we write \(z_n = 2x_n + 1 \), these become

\[
\begin{align*}
 x_{n+1} &= 3x_n + 2y_n + 1, \\
 y_{n+1} &= 4x_n + 3y_n + 2, \quad x_0 = 0, \ y_0 = 1.
\end{align*}
\]

The beginning values of \(x_n \) and \(y_n \) are as follows.

<table>
<thead>
<tr>
<th>(n)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>\ldots</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_n)</td>
<td>3</td>
<td>20</td>
<td>119</td>
<td>696</td>
<td>4059</td>
<td>23660</td>
<td>137903</td>
<td>803760</td>
<td>4684659</td>
<td>27304196</td>
<td>\ldots</td>
</tr>
<tr>
<td>(y_n)</td>
<td>5</td>
<td>29</td>
<td>169</td>
<td>985</td>
<td>5741</td>
<td>33461</td>
<td>195025</td>
<td>1136689</td>
<td>6625109</td>
<td>38613965</td>
<td>\ldots</td>
</tr>
</tbody>
</table>

4. Find eleven consecutive positive integers, the sum of whose squares is the square of an integer.

Answer:

\[
\begin{align*}
 18^2 + 19^2 + \cdots + 28^2 &= 77^2, \\
 38^2 + 39^2 + \cdots + 48^2 &= 143^2, \\
 456^2 + 457^2 + \cdots + 466^2 &= 1529^2, \\
 854^2 + 855^2 + \cdots + 864^2 &= 2849^2, \\
 9192^2 + 9193^2 + \cdots + 9202^2 &= 30503^2, \\
 17132^2 + 17133^2 + \cdots + 17142^2 &= 56837^2, \\
 \vdots
\end{align*}
\]
13.1 Group law on \(y^2 = x^3 + ax^2 + bx + c \)

Consider an elliptic curve

\[
\mathcal{E} \quad \quad y^2 = f(x) := x^3 + ax^2 + bx + c.
\]

We shall write a point \(P \) on \(\mathcal{E} \) in the form \(P = (x[P], y[P]) \), and put the identity at a point of infinity, so that

\[y[-P] = -y[P]. \]

Consider a line of slope \(m \) passing through \(P \). It has equation \(y - y[P] = m(x - x[P]) \). It intersects the elliptic curve \(\mathcal{E} \) at points whose \(x \)-coordinates are the roots of the equation

\[
(mx + (y[P] - mx[P]))^2 = x^3 + ax^2 + bx + c,
\]
or equivalently,

\[x^3 - (m^2 - a)x^2 - (2m(y[P] - mx[P]) - b)x + c - (y[P] - mx[P])^2 = 0. \]

Since the sum of the three roots of the cubic is \(m^2 - a \), we make the following conclusions.

(1) If the line is the tangent at \(P \), then

(i) \(m = \frac{f'(x[P])}{2y[P]} \),

(ii) the third intersection has \(x \)-coordinate

\[
m^2 - a - 2x[P] = \frac{f'(x[P])^2}{4y[P]^2} - a - 2x[P] = \frac{x[P]^4 - 2bx[P]^2 - 8cx[P] + (b^2 - 4ac)}{4y[P]^2} = \frac{x[P]^4 - 2bx[P]^2 - 8cx[P] + (b^2 - 4ac)}{4(x[P]^3 + ax[P]^2 + bx[P] + c)}.
\]

The \(y \)-coordinate can be computed from the equation of the line.

\[
\]

(2) If the line joins two points \(P_1 \) and \(P_2 \) on \((E) \), then

(i) \(m = \frac{y[P_1] - y[P_2]}{x[P_1] - x[P_2]} \),

(ii) the third intersection has \(x \)-coordinate

\[
m^2 - a - x[P_1] - x[P_2] = \left(\frac{y[P_1] - y[P_2]}{x[P_1] - x[P_2]} \right)^2 - a - (x[P_1] + x[P_2]) = \frac{x[P_1][x[P_2][x[P_1] + x[P_2] + 2a] + b(x[P_1] + x[P_2]) + 2c - 2y[P_1]y[P_2]}{(x[P_1] - x[P_2])^2}.
\]

The \(y \)-coordinate can be computed from the equation of the line.

13.2 The discriminant

The discriminant of the cubic \(f(x) := x^3 + ax^2 + bx + c \) is the number

\[
D := -4a^3c + a^2b^2 + 18abc - 4b^3 - 27c^2.
\]
Theorem 13.1 (Nagell-Lutz). Let $P = (x, y)$ be a finite order point of $(E) : y^2 = x^3 + ax^2 + bx + c$. Then either $y = 0$ (in which case P has order 2) or $y^2 | D$.

Theorem 13.2 (Mazur). The torsion group of the rational points of an elliptic curve over \mathbb{Q} is one of the following 15 groups:

(i) \mathbb{Z}_n with $n = 1, 2, 3, \ldots, 9, 10, 12$;
(ii) $\mathbb{Z}_{2n} \oplus \mathbb{Z}_2$ with $n = 1, 2, 3, 4$.

Example 13.1.

<table>
<thead>
<tr>
<th>Elliptic Curve</th>
<th>Torsion group</th>
<th>Discriminant</th>
</tr>
</thead>
<tbody>
<tr>
<td>$y^2 = x^3 + 2$</td>
<td>0</td>
<td>$-2^2 \cdot 3^3$</td>
</tr>
<tr>
<td>$y^2 = x^3 + x$</td>
<td>\mathbb{Z}_2</td>
<td>-2^2</td>
</tr>
<tr>
<td>$y^2 = x^3 + 4$</td>
<td>\mathbb{Z}_3</td>
<td>$-2^4 \cdot 3^3$</td>
</tr>
<tr>
<td>$y^2 = x^3 + 4x$</td>
<td>\mathbb{Z}_4</td>
<td>-2^8</td>
</tr>
</tbody>
</table>
Chapter 14

Heron triangles and Elliptic Curves

14.1 The elliptic curve \(y^2 = (x - k)^2 - 4kx^3 \)

A triangle is determined, up to similarity, by a set of three positive real numbers \(\{t_1, t_2, t_3\} \) satisfying the relation

\[
t_1t_2 + t_2t_3 + t_3t_1 = 1. \tag{14.1}
\]

Such are indeed the tangents of the half-angles of the triangle. If the triangle is scaled to have unit semiperimeter, the lengths of the sides are

\[
t_1(t_2 + t_3), \ t_2(t_3 + t_1), \ \text{and} \ t_3(t_1 + t_2),
\]

and the area is \(k = t_1t_2t_3 \). From the inequality of arithmetic and geometric means, it is easy to see that \(k^2 \leq \frac{1}{27} \), with equality precisely in the case of an equilateral triangle. We study triangles with rational sides and rational areas. It is clear that for such triangles, the parameters \(t_1, t_2, \) and \(t_3 \) are all rational. Since such triangles cannot be equilateral, we shall assume \(k^2 < \frac{1}{27} \). Elimination of \(t_3 \) leads to

\[
t_1^2t_2^2 - (t_1 - k)t_2 + kt_1 = 0.
\]

A given rational number \(t_1 \) determines a rational number \(t_2 \), and consequently a triangle with rational sides and rational area, if and only if \((t_1 - k)^2 - 4kt_1^3 \) is a rational square. A rational point \((x, y) \) on the elliptic curve

\[
\mathcal{E}_k : \quad y^2 = (x - k)^2 - 4kx^3,
\]
therefore, determines rational numbers

\[t_1 = x, \quad t_2 = \frac{x + y - k}{2x^2}, \quad t_3 = \frac{x - y - k}{2x^2}. \] (14.2)

These parameters in turn define a genuine triangle provided \(x > k \), (see Lemma 2 below), the sides of the triangles being

\[a = t_1(t_2 + t_3) = \frac{x - k}{x}, \]
\[b = t_2(t_3 + t_1) = \frac{x + y + k}{2x}, \]
\[c = t_3(t_1 + t_2) = \frac{x - y + k}{2x}. \]

Given a triangle with unit semiperimeter and rational area \(k \), we shall show that the associated elliptic curves \(E_k \) has positive rank, provided that the triangle is non-isosceles. This leads to the following theorem on the existence of arbitrary number of Heron triangles equal in perimeter and in area.

Theorem 14.1. Given a non-isosceles rational triangle \(T \) (of semiperimeter 1) and a positive integer \(N \), there are an integer \(s \) and \(N \) noncongruent Heron triangles all having the same area and perimeter as \(sT \).

The qualification of non-isosceles triangle is essential. An example is provided by the case of the isosceles with sides (5,5,6), with \(t_1 = t_2 = \frac{1}{2} \), and \(t_3 = \frac{3}{4} \), and \(k = t_1t_2t_3 = \frac{3}{16} \). The elliptic curve \(E_k \) has rank 0, (See Proposition 10), showing that there are no other triangles of unit semiperimeter with the same value of \(k \). However, such an isosceles triangle has equal perimeter and equal area as another isosceles triangle, then the elliptic curve has positive rank, and the statement of the theorem remains valid.

Guy [??, D16] reports that the problem of finding as many different triples of positive integers as possible with the same sum and the same product has been solved by A. Schinzel, that there are arbitarily many. Theorem 1 offers a solution to the same problem: an arbitrary number of such triples, with the additional property that the sum and the product multiply to a square, can be constructed from any triple of distinct positive integers \(x, y, z \) with the same property, i.e., \(xyz(x + y + z) = A^2 \) for an integer \(A \). Any such triple defines a Heron triangle with sides \(x + y, y + z, z + x \), and area \(A \).
14.1 The elliptic curve $y^2 = (x - k)^2 - 4kx^3$

Let k be a rational number $< \frac{1}{3\sqrt{3}}$. The cubic polynomial

$$f_k(x) := (x - k)^2 - 4kx^3$$

has three distinct real roots separated by k and $3k$, since

$$f(-\infty) = +\infty,$$
$$f(k) = -4k^4 < 0,$$
$$f(3k) = 4k^2(1 - 27k^2) > 0,$$
$$f(+\infty) = -\infty.$$

This means that the elliptic curve E_k has two components, one of which is compact. A point (x, y) on E_k lies in the compact component if and only if $x > k$. By Lemma 2 below, a point on E_k corresponds to a genuine triangle if and only if its lies in the compact component.

Lemma 14.2. A point (x, y) on the elliptic curve E_k defines a genuine triangle if and only if $x > k$.

Proof. From (14.2), $t_2 + t_3 = \frac{x-k}{x^2}$ and $t_2t_3 = \frac{y^2}{4x^4}$. It is clear that t_1, t_2, t_3 are all positive (and defines a genuine triangle) if and only if $x > k$. \(\Box\)

The addition law of E_k is given by

$$x(P + Q) = \frac{1}{4k}(1 - \lambda^2) - x(P) - x(Q),$$

where

$$\lambda = \begin{cases}
\frac{y(P) - y(Q)}{x(P) - x(Q)}, & \text{if } P \neq Q, \\
\frac{x(P) - k - 6kx(P)^2}{y(P)}, & \text{if } P = Q.
\end{cases}$$

Lemma 14.3. Let P be a point on the compact component of E_K. The six points $\pm P$, $\pm P \pm I$ all represent the same (similarity class of) rational triangles.

Proof. Write $P = (t_1, t_1^2(t_2 - t_3))$. Then, for $\epsilon = \pm 1$,

$$\epsilon(P + I) = (t_2, \epsilon t_3^2(t_3 - t_1)),$$
$$\epsilon(P - I) = (t_3, \epsilon t_1^2(t_1 - t_2)).$$

Let P and Q be two distinct points on E_k, one on each of the two components. By the convexity of the compact component, it is clear that the sum $P + Q$ lies in the compact component. Now, if P is a point in the
compact component, then $2P$ must be in the noncompact one. It follows by induction that all odd multiples of P are in the compact component, and hence define genuine rational triangles.

Example 14.1. For $k = \dfrac{1}{6}$, the cubic polynomial $f_k(x) = \dfrac{1}{36}(1 - 12x + 36x^2 - 24x^3)$ is irreducible.

Example 14.2. For $k = \dfrac{168}{1331} = \dfrac{2^3 \cdot 3 \cdot 7}{11^3}$, the cubic polynomial

$$f_k(x) = -4k(x - \dfrac{56}{33})(x^2 - \dfrac{699}{2464}x + \dfrac{9}{484}).$$

The rational root $\dfrac{56}{33}$ corresponds to the isosceles Heron triangle $(65, 65, 112)$. On the same curve, there are rational points with $x = \dfrac{2}{11}, \dfrac{8}{11}, \dfrac{21}{22}$, corresponding to the Heron triangle $(37, 100, 105)$, also of perimeter 242 and area 1848.

Example 14.3. For $k = \dfrac{60}{343}$, the cubic polynomial $f_k(x)$ has three rational roots $\dfrac{15}{112} < \dfrac{12}{35} < \dfrac{20}{21}$. The larger two correspond respectively to the isosceles triangles $(24, 37, 37)$ and $(29, 29, 40)$, both with perimeters 98 and area 420. On E_k lie also the rational points with $x = \dfrac{5}{14}, \dfrac{4}{7}, \dfrac{6}{7}$, corresponding to the Heron triangle $(25, 34, 39)$, with the same perimeter and area.

14.1.1 Proof of Theorem 14.1

A non-isosceles triangle with semiperimeter 1 and area k corresponds to a point P in the component of the elliptic curve E_k. Such a point cannot have finite order, and so generates an infinite cyclic subgroup of E_k. The points mP lies in the compact component precisely when m is odd. For any given integer N, the points $(2m - 1)P, 1 \leq m \leq N$, all lie in the compact component, and therefore represent rational triangles T_m, each of semiperimeter 1 and area k. Let s be the least common multiple of the denominators of the lengths of sides of these N triangles. Magnifying each of them by the factor s, we obtain a sequence of N Heron triangles, all with semiperimeter s, and area ks^2.

Example 14.4. The right triangle $(3, 4, 5)$ corresponds to the point $P(1, \dfrac{1}{6})$ on the curve $E_{1/6}$. The primitive Heron triangles corresponding the points $P, 3P, 5P, 7P,$ and $9P$, with their semiperimeters and areas, are as follows.
14.1 The elliptic curve $y^2 = (x - k)^2 - 4kx^3$

(3, 4, 5; 6, 6),
(287, 468, 505; 630, 66150),
(3959527, 3997940, 5810001; 6883734, 7897632297126),
(3606573416251, 5935203156525, 6344028032612; 7942902302694, 10514949498356941266609606),
(480700822846118327460, 630296830413008002763, 7957516439588851119197; 953374648609005724710, 151487203435057523536941712814925384097350).

The LCM of the semiperimeters being

$s = 1447986121797526457728510272387457724310$,

magnifying these triangles by appropriate factors, we obtain five Heron triangles, all with semiperimeter s and area

$\Delta = 349443968153040187579733428603820320155254000034420331290213618794580660829350$.

The following example shows that the hypothesis of non-isoscelesity is essential.

Remark. Let $k = \frac{1}{3} \cdot \frac{1}{2} \cdot \frac{3}{4} = \frac{3}{16}$. The elliptic curve is cyclic of order 6. In particular, it has rank 0.

This value of k arises from the isosceles triangle $(5, 5, 6)$. By Proposition 7, there is no other (noncongruent) triangle of unit semiperimeter and the same area. On the other hand, Example 1 shows that for the isosceles triangle $(65,65,126)$, the associated elliptic curve has positive rank.
Supplements and Corrections

5.1
The partial solution of the exercise should be replaced by the following.

Let \(u = s - a \) and \(v = s - b \). Since \(r = s - c \) for a right triangle, we have \((u+r)^2 + (v+r)^2 = (u+v)^2\). This can be rearranged as \((u-r)(v-r) = 2r^2\). Each factorization of \(2r^2 \) into the product of two numbers gives \(u \) and \(v \) up to an interchanges, and one Pythagorean triangle of inradius \(r \). There are \(\frac{1}{2}d(2r^2) \) such pairs, where \(d \) is the number-of-divisors function.

5.5
Proposition 5.2 (3) should be replaced by the following.

(3) For Pythagorean triangles of inradius \(r \), there are exactly \(\frac{1}{2}d(2r^2) \) of such, where \(d \) is the number-of-divisors function.

The proof for (3) should be replaced by the following.

If \(k \) is a divisor of \(2r^2 \) greater than \(\sqrt{2r} \), then \(u = r + k \) and \(v = r + \frac{2r^2}{k} \) give a Pythagorean triangle \((r+v, r+u, u+v)\) with inradius \(r \).

5.6 Enumeration of Pythagorean triangles according to inradii

According to (the supplement of) §5.1, we can make a complete list of Pythagorean triples arranged in ascending order of the inradius. For each positive integer \(r \),
(i) list the divisors of \(2r^2 \) in ascending order up to \(\sqrt{2r} \),
(ii) for each factor \(k \), set

\[
(a, b, c) = \left(k + 2r, \frac{2r^2}{k} + 2r, k + \frac{2r^2}{k} + 2r \right).
\]

See [10].
6.1

Lemma 14.4. Let p be an odd prime. The residue -1 is a square modulo p if and only if $p \equiv 1 \pmod{4}$.

Proof. (\Leftarrow) If $p = 4k + 1$, it follows from Wilson’s theorem that

$$((2k)!)^2 \equiv (2k)! \cdot (p - 2k) \cdots (p - 1) \equiv (2k)! \cdot (2k + 1) \cdots (p - 1) \equiv (p - 1)! \equiv -1 \pmod{p}.$$

(\Rightarrow) If $x^2 \equiv -1 \pmod{p}$, then

$$(−1)^{(p−1)/2} \equiv (x^2)^{(p−1)/2} \equiv x^{p−1} \equiv 1 \pmod{p}$$

by Fermat’s little theorem. It follows that $\frac{p−1}{2}$ is an even integer, and $p \equiv 1 \pmod{4}$. \qed

In the proof of Theorem 6.1, replace each occurrence of x_1 by u and y_1 by v. The first part of the proof is rewritten with minor changes as follows.

Since $p \equiv 1 \pmod{4}$, the equation $x^2 + y^2 = mp$ is solvable in integers for some m. We want to show that the smallest possible value of m is 1. Note that we may choose $|x|, |y| < \frac{p}{2}$ so that $m < \frac{p}{2}$. If $m \neq 1$, it cannot divide both of x and y, for otherwise $m^2|x^2 + y^2 = mp$ and $m|p$, contrary to $m < \frac{p}{2}$. Now choose integers u and v in the range $−\frac{m}{2} < u, v < \frac{m}{2}$ such that $u \equiv x \pmod{m}$ and $v \equiv y \pmod{m}$. Note that u and v cannot be both zero, and

$$0 < u^2 + v^2 \leq \frac{m^2}{2}.$$

It follows that $u^2 + v^2 = m'p$ for some $m' \leq \frac{m}{2} < m$. Now,

$$m^2m'p = (x^2 + y^2)(u^2 + v^2) = (xu + yv)^2 + (xv - yu)^2, \quad (14.4)$$

Note that

$$xu + yv \equiv x^2 + y^2 \equiv 0 \pmod{m},$$
$$xv - yu \equiv xy - yx \equiv 0 \pmod{m}.$$

Therefore, $X := \frac{xu + yv}{m}$ and $Y := \frac{xv - yu}{m}$ are integers. From (14.4) it follows that

$$X^2 + Y^2 = m'p$$
with \(m' < m \). By descent, we finally reach an equation \(x^2 + y^2 = p \). □

Now, we summarize this descent step as follows.

Let \(q \) be the square root of \(-1 \pmod{p}\), chosen in the range \(0 < q < \frac{p}{2} \), and \(q^2 + 1 = mp \). Let \(u \) and \(v \) be chosen in the range \(-\frac{p}{2} < u < \frac{p}{2} \) satisfying \(u \equiv q \pmod{p} \) and \(v = 1 \).

Let \(x_1 = q \), \(y_1 = 1 \), \(m_1 = m \), \(u_1 = u \), and \(v_1 = 1 \).

Define \((x_n, y_n, m_n, u_n, v_n)\) inductively as follows. If \(m_n = 1 \), then \(x_n^2 + y_n^2 = p \). If \(m_n > 1 \), define

(i) \(x_{n+1} = \frac{x_n u_n + y_n v_n}{m_n} \) and \(y_{n+1} = \frac{x_n v_n - y_n u_n}{m_n} \);

(ii) \(m_{n+1} = \frac{x_{n+1}^2 + y_{n+1}^2}{p} \);

(iii) \(u_{n+1}, v_{n+1} \) in the interval \(\left(-\frac{m_{n+1}}{2}, \frac{m_{n+1}}{2}\right) \) such that \(u_{n+1} \equiv x_{n+1} \pmod{m_{n+1}} \) and \(v_{n+1} \equiv y_{n+1} \pmod{m_{n+1}} \).

Example 14.5. For \(p = 3637 \), we have \(q = 1027 \) and \(p = 39^2 + 46^2 \) from the following table.

<table>
<thead>
<tr>
<th>(n)</th>
<th>(x_n)</th>
<th>(y_n)</th>
<th>(m_n)</th>
<th>(u_n)</th>
<th>(v_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1027</td>
<td>1</td>
<td>290</td>
<td>-133</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>-471</td>
<td>4</td>
<td>61</td>
<td>17</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>-131</td>
<td>-32</td>
<td>5</td>
<td>-1</td>
<td>-2</td>
</tr>
<tr>
<td>4</td>
<td>39</td>
<td>46</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chapter 8

Page 401: 3. The product of two quadratic residues mod \(n \) is not necessarily a quadratic residue mod \(n \). For example, in \(\mathbb{Z}_{12}^* = \{1, 5, 7, 11\} \), only 1 is a quadratic residue; 5, 7, and 11 \(\equiv 5 \cdot 7 \) are all quadratic non-residues.
14.1.2 Theorem 11.4

Note the symmetry within a period of the continued fraction expansion of \sqrt{d}. We illustrate this with two examples.

(a). The continued fraction of $\sqrt{94}$. We shall compute that of $9 + \sqrt{94}$, which is purely periodic, since the quadratic irrationality $9 + \sqrt{94}$ is reduced:

$$
\begin{align*}
 k & & 1 & & = & & \zeta_k & & = & & q_k + (\zeta_k - q_k) \\
 0 & & 1 & & = & & 9 + \sqrt{94} & & = & & 18 + (-9 + \sqrt{94}) \\
 1 & & 0 & & = & & \frac{9}{13} & & = & & 1 + \frac{4}{\sqrt{94}} \\
 2 & & 1 & & = & & \frac{4}{6} & & = & & 2 + \frac{2}{13} \\
 3 & & 0 & & = & & \frac{8}{5} & & = & & 3 + \frac{2}{13} \\
 4 & & 1 & & = & & \frac{7}{9} & & = & & 1 + \frac{2}{9} \\
 5 & & 0 & & = & & \frac{2}{10} & & = & & 1 + \frac{2}{10} \\
 6 & & 1 & & = & & \frac{8}{15} & & = & & 5 + \frac{7}{15} \\
 7 & & 0 & & = & & \frac{7}{15} & & = & & 1 + \frac{2}{15} \\
 8 & & 1 & & = & & \frac{8}{2} & & = & & 8 + \frac{2}{2} \\
 9 & & 0 & & = & & \frac{8}{15} & & = & & 1 + \frac{7}{15}.
\end{align*}
$$

It is here where symmetry begins when in $\zeta_9 = q_9 + \frac{1}{\zeta_{10}}$, we have $\frac{1}{\zeta_{10}} = -\zeta_9$. This is because the preceding line

$$
\zeta_8 = q_8 + \frac{1}{\zeta_9}
$$

can be conjugated to give

$$
\overline{\zeta_8} = q_8 + \frac{1}{\overline{\zeta_9}} = q_8 - \zeta_{10}.
$$

In other words,

$$
\zeta_{10} = q_8 + (-\overline{\zeta_8}).
$$

Note that since ζ_8 is reduced, this last term is between 0 and -1. This means $q_9 = q_8$ and $\frac{1}{\zeta_{10}} = -\overline{\zeta_8}$. By iteration, we obtain the sequence q_8, q_7, \ldots, q_1, and

$$
9 + \sqrt{94} = [18, 1, 2, 3, 1, 1, 5, 1, 8, 1, 5, 1, 1, 3, 2, 1]; \\
\sqrt{94} = [9, 1, 2, 3, 1, 1, 5, 1, 8, 1, 5, 1, 1, 3, 2, 1, 18].
$$

In this case, the period has even length.
14.1 The elliptic curve $y^2 = (x - k)^2 - 4kx^3$

(b) Another kind of symmetry occurs in the expansions of, say, $\sqrt{97}$. Again, we compute the purely periodic expansion of $9 + \sqrt{97}$:

<table>
<thead>
<tr>
<th>k</th>
<th>$\frac{1}{\zeta_{k-1} - q_{k-1}}$</th>
<th>ζ_k</th>
<th>$q_k + (\zeta_k - q_k)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$-9 + \sqrt{97}$</td>
<td>$\frac{1}{16}$</td>
<td>$18 + (-9 + \sqrt{97})$</td>
</tr>
<tr>
<td>1</td>
<td>$-7 + \sqrt{97}$</td>
<td>$\frac{7}{3}$</td>
<td>$5 + \frac{7}{3}$</td>
</tr>
<tr>
<td>2</td>
<td>$-8 + \sqrt{97}$</td>
<td>$\frac{8}{11}$</td>
<td>$1 + \frac{8}{11}$</td>
</tr>
<tr>
<td>3</td>
<td>$-3 + \sqrt{97}$</td>
<td>$\frac{3}{2}$</td>
<td>$1 + \frac{3}{2}$</td>
</tr>
<tr>
<td>4</td>
<td>$-5 + \sqrt{97}$</td>
<td>$\frac{5}{9}$</td>
<td>$1 + \frac{5}{9}$</td>
</tr>
<tr>
<td>5</td>
<td>$-4 + \sqrt{97}$</td>
<td>$\frac{4}{9}$</td>
<td>$1 + \frac{4}{9}$</td>
</tr>
</tbody>
</table>

Here, we have $\frac{1}{\zeta_6} = -\zeta_6$. In fact,

\[
\zeta_5 = q_5 + \frac{1}{\zeta_6} = q_5 - \zeta_5, \quad \zeta_6 = q_5 - \zeta_5, \quad q_6 = q_5 + (-\zeta_5).
\]

This means $q_7 = q_5$ and $\frac{1}{\zeta_8} = -\zeta_6$. Symmetry emerges by iteration, and we have

\[
9 + \sqrt{97} = [18, 1, 5, 1, 1, 1, 1, 1, 1, 5, 1];
\]
\[
\sqrt{97} = [9, 1, 5, 1, 1, 1, 1, 1, 1, 5, 1, 18].
\]

In this case, the period has odd length.

Chapter 12

Approximations to Irrational Numbers

Theorem 14.5. Let ζ be an irrational number. If a rational approximation $\frac{P}{Q}$, $Q \geq 1$, satisfies

\[
\left| \zeta - \frac{P}{Q} \right| < \frac{1}{2Q^2},
\]

then $\frac{P}{Q}$ is one of the convergents of the continued fraction expansion of ζ.
Proof. (1) \[|Q_n \zeta - P_n| < \frac{1}{Q_{n+1}}. \]

\[
\begin{align*}
|\zeta - \frac{P_n}{Q_n}| &= \left| \frac{P_{n-1} + P_n \zeta_{n+1}}{Q_{n-1} + Q_n \zeta_{n+1}} - \frac{P_n}{Q_n} \right| \\
&= \frac{1}{Q_n(Q_{n-1} + Q_n \zeta_{n+1})} \\
&< \frac{1}{Q_n(Q_{n-1} + Q_n a_{n+1})} \\
&= \frac{1}{Q_n Q_{n+1}}.
\end{align*}
\]

The inequality follows by multiplying by \(Q_n\).

(2) If \(\frac{P}{Q}, Q > 0\), satisfies \(|Q \zeta - P| < |Q_n \zeta - P_n|\) for some \(n \geq 1\). Then, \(Q \geq Q_{n+1}\).

Suppose \(|Q \zeta - P| < |Q_n \zeta - P_n|\) for \(Q < Q_{n+1}\). We can find integers \(x\) and \(y\) satisfying

\[
x P_n + y P_{n+1} = P, \\
x Q_n + y Q_{n+1} = Q.
\]

Actually, \(x = (-1)^n(PQ \zeta_{n+1} - Q P_{n+1})\) and \(y = (-1)^n(P_n Q - Q_n P)\). Since \(\frac{P}{Q}\) is different from \(\frac{P_n}{Q_n}\) and \(\frac{P_{n+1}}{Q_{n+1}}\), \(x\) and \(y\) are nonzero.

First note that \(x\) and \(y\) must be nonzero. If any of \(x, y\) is zero, then \(\frac{P}{Q}\) is one of \(\frac{P_n}{Q_n}\) and \(\frac{P_{n+1}}{Q_{n+1}}\). Indeed, \(x\) and \(y\) have opposite signs.

If \(y < 0\), then \(x Q_n = Q - y Q_{n+1} > 0\), and \(x > 0\).

If \(y > 0\), then \(Q < Q_{n+1}\) implies \(Q < y Q_{n+1}\) and \(x_n Q_n\) must be negative, and \(x < 0\).

These justify that claim that \(x\) and \(y\) have opposite signs. Consequently, \(x(Q_n \zeta - P_n)\) and \(y(Q_{n+1} \zeta - P_{n+1})\) have the same sign, and

\[
|Q \zeta - P| = \left| x(Q_n \zeta - P_n) + y(Q_{n+1} \zeta - P_{n+1}) \right| \\
= \left| x(Q_n \zeta - P_n) \right| + \left| y(Q_{n+1} \zeta - P_{n+1}) \right| \\
> \left| Q_n \zeta - P_n \right|,
\]

a contradiction.

(3) Suppose \(\frac{P}{Q}\) is not a convergent of \(\zeta\). Then \(Q_n < Q < Q_{n+1}\) for some \(n\). But \(|Q \zeta - P| < |Q_n \zeta - P_n|\) is impossible. Therefore,

\[
|Q_n \zeta - P_n| \leq |Q \zeta - P| < \frac{1}{2Q}.
\]
14.1 The elliptic curve \(y^2 = (x - k)^2 - 4kx^3 \)

Now, using the fact that \(\frac{P}{Q} \neq \frac{P_n}{Q_n} \) and that \(PQ_n - P_nQ \) is an integer, we have

\[
\left| \frac{P_n}{Q_n} - \frac{P}{Q} \right| = \frac{|QP_n - P_nQ|}{QQ_n} \geq \frac{1}{QQ_n},
\]

and

\[
\left| \frac{P_n}{Q_n} - \frac{P}{Q} \right| \leq \left| \zeta - \frac{P_n}{Q_n} \right| + \left| \zeta - \frac{P}{Q} \right| < \frac{1}{2QQ_n} + \frac{1}{2Q^2}.
\]

By comparison, \(Q < Q_n \), an impossibility. \(\square \)

Theorem 12.2

Replaced by the following with minor change of notations.

Theorem 14.6. Let \(s \) be an integer satisfying \(|s| < \sqrt{d} \). If \((x, y) = (P, Q) \) is a positive solution of the equation

\[
x^2 - dy^2 = s
\]

then \(\frac{P}{Q} \) is a convergent of the continued fraction expansion of \(\sqrt{d} \).

Proof. Case 1: \(s > 0 \). Writing \(s = (P + Q\sqrt{d})(P - Q\sqrt{d}) \), we have

\[
0 < P - Q\sqrt{d} = \frac{s}{P + Q\sqrt{d}} < \frac{\sqrt{d}}{P + Q\sqrt{d}} = \frac{1}{Q(1 + \frac{P}{Q\sqrt{d}})} < \frac{1}{2Q}.
\]

From this,

\[
\left| \sqrt{d} - \frac{P}{Q} \right| < \frac{1}{2Q^2},
\]

and \(\frac{P}{Q} \) is a convergent of the continued fraction expansion of \(\xi \).

Case 2: \(s < 0 \). Rewriting the equation as \(\frac{s}{d} = (Q + \frac{P}{\sqrt{d}})(Q - \frac{P}{\sqrt{d}}) \), we have

\[
0 < Q - \frac{P}{\sqrt{d}} = \frac{-s}{Q + \frac{P}{\sqrt{d}}} < \frac{\sqrt{d}}{Q + \frac{P}{\sqrt{d}}} = \frac{1}{Q} \frac{1}{Q + \frac{P}{\sqrt{d}}} < \frac{1}{2P}.
\]
Therefore,\[
\left| \frac{1}{\sqrt{d}} - \frac{Q}{P} \right| < \frac{1}{2P^2}
\]
and \(\frac{Q}{P} \) is a convergent of \(\frac{1}{\sqrt{d}} \), and \(\frac{P}{Q} \) one of \(\sqrt{d} \).

\[\square\]

Proof of Theorem 12.3

For an arbitrary (but fixed) integer \(s \), consider the equation \(E(d, s) \), with solution set \(S_d(s) \) as a subset of \(\mathbb{Z}[\sqrt{d}] \). We define a relation \(\approx \) in \(S_d(s) \) by
\[
\alpha \approx \beta \text{ if and only if } \alpha \beta^{-1} \in \mathbb{Z}[\sqrt{d}].
\]
This clearly is an equivalence relation. The solutions of \(E(d, s) \) therefore are partitioned into disjoint classes.

In generally, the class of \(\alpha \) and that of \(\bar{\alpha} \) are disjoint. But sometimes, they may coincide. In that case, we say that the class is ambiguous.

Clearly, for \(s = \pm 1 \), there is only one class, and the class is ambiguous.

We shall therefore assume \(s \neq \pm 1 \). Note that each class of \(S_d(s) \) is infinite. In fact, if \(\epsilon := a + b\sqrt{d} \), the fundamental solution of \(E(d) \), the class of \(\alpha \) contains \(\alpha \cdot \epsilon^n \), \(n \in \mathbb{Z} \). In each class, we choose the solution with least possible non-negative second component. This uniquely determines the first component, except in the ambiguous case. In this case, we stipulate that the first component be non-negative. In this way, in each class, we single out a fundamental solution.

Theorem 12.3A.

Let \(s > 0 \). If \(u + v\sqrt{d} \) is the fundamental solution of \(E(d, s) \), then
\[
0 \leq v \leq \frac{b}{\sqrt{2(a + 1)}} \cdot \sqrt{s},
\]
\[
0 < |u| \leq \frac{1}{2}(a + 1)s.
\]

Proof. We may assume \(u > 0 \). Consider
\[
(u + v\sqrt{d})(a - b\sqrt{d}) = (au - dbv) + (av - bu)\sqrt{d}.
\]
This clearly belongs to the same class of \(u + v\sqrt{d} \in S_d(s) \). Now, since
\[
au - dbv = au - \sqrt{db^2 \cdot dv^2} = au - \sqrt{(a^2 - 1)(u^2 - s)} > 0,
\]
we must have \(au - dbv \geq u \). From this it follows that
\[
(a - 1)^2 u^2 \geq d^2 b^2 v^2 = (a^2 - 1)(u^2 - s),
\]
and
\[
u^2 \leq \frac{1}{2}(a + 1)s.
\]
This completes the proof.

Theorem 12.3B.
Let \(s > 0 \). If \(u + v\sqrt{d} \) is the fundamental solution of \(E(d, -s) \), then
\[
0 < \frac{b}{\sqrt{2(a - 1)}} \cdot \sqrt{s},
\]
\[
0 \leq |u| \leq \sqrt{\frac{1}{2}(a - 1)s}.
\]

Proof. We may again suppose \(u \geq 0 \). Again,
\[
(a - b\sqrt{d})(u + v\sqrt{d}) = (au - dbv) + (av - bu)\sqrt{d}
\]
is in \(S_d(s) \). Since
\[
(av)^2 = a^2 \cdot v^2 = (db^2 + 1) \cdot \frac{1}{d}(u^2 + s) = (b^2 + \frac{1}{d})(u^2 + s) > (bu)^2,
\]
it follows that \(av - bu > 0 \), and indeed \(av - bu \geq v \). From this
\[
dv^2(a - 1)^2 \geq db^2 u^2,
\]
\[
(u^2 + s)(a - 1)^2 \geq (a^2 - 1)u^2,
\]
\[
u^2 \leq \frac{1}{2}(a - 1)s.
\]
Chapter 12. Sums of consecutive squares

Sums of an odd number of consecutive squares

Suppose the sum of the squares of \(2k + 1\) consecutive positive integers is a square. If the integers are \(b, b \pm 1, \ldots, b \pm k\). We require

\[(2k + 1)b^2 + \frac{1}{3}k(k + 1)(2k + 1) = a^2\]

for an integer \(a\). From this we obtain the equation

\[a^2 - (2k + 1)b^2 = \frac{1}{3}k(k + 1)(2k + 1). \quad (E_k)\]

Exercise

1. Suppose \(2k + 1\) is a square. Show that \((E_k)\) has solution only when \(k = 6m(m + \epsilon)\) for some integers \(m > 1\), and \(\epsilon = \pm 1\). In each case, the number of solutions is finite.

Number of solutions of \((E_k)\) when \(2k + 1\) is a square

<table>
<thead>
<tr>
<th>(2k + 1)</th>
<th>25</th>
<th>49</th>
<th>121</th>
<th>169</th>
<th>289</th>
<th>361</th>
<th>529</th>
<th>625</th>
<th>841</th>
<th>961</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>10</td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

2. Find the unique sequence of 49 (respectively 121) consecutive positive integers whose squares sum to a square.

Answer: \(25^2 + 26^2 + \cdots + 73^2 = 357^2; 244^2 + 245^2 + \cdots + 364^2 = 3366^2;\)

Remark: The two sequences of 169 consecutive squares whose sums are squares are

\[30^2 + 31^2 + \cdots + 198^2 = 1612^2;\]
\[510^2 + 511^2 + \cdots + 678^2 = 7748^2.\]

3. Suppose \(2k + 1\) is not a square. If \(k + 1\) is divisible \(9 = 3^2\) or by any prime of the form \(4k + 3 \geq 7\), then the equation \((E_k)\) has no solution.

4. Show that for the following values of \(k < 50\), the equation \((E_k)\) has no solution:

\[k = 6, 8, 10, 13, 17, 18, 20, 21, 22, 26, 27, 30, 32, 34, 35, 37, 40, 41, 42, 44, 45, 46, 48, \ldots\]
5. Suppose $p = 2k + 1$ is a prime. If the Legendre symbol \(\left(\frac{-\frac{1}{2}k(k+1)}{p} \right) = -1 \), then the equation \((E_k)\) has no solution.

6. Show that for the following values of $k < 50$, the equation \((E_k)\) has no solution:

- $1, 2, 3, 8, 9, 14, 15, 20, 21, 26, 33, 39, 44.$

We need only consider \((E_k)\) for the following values of k:

- $5, 7, 11, 16, 19, 23, 25, 28, 29, 31, 36, 38, 43, 47, 49.$

7. Use Theorem 12.3 to check that among these, only for $k = 5, 11, 16, 23, 29$ are the equations \((E_k)\) solvable.

8. From the data of Example 12.1, work out 5 sequences of 23 consecutive integers whose squares add up to a square in each case.

 Answer:

 \[
 \begin{align*}
 7^2 + 8^2 + \cdots + 29^2 &= 92^2; \\
 881^2 + 882^2 + \cdots + 903^2 &= 4278^2; \\
 42787^2 + 42788^2 + \cdots + 42809^2 &= 205252^2; \\
 2053401^2 + 2053402^2 + \cdots + 2053423^2 &= 9847818^2; \\
 \cdots \cdots
 \end{align*}
 \]

9. Consider the equation \((E_{36})\) : $a^2 - 73b^2 = 12 \cdot 37 \cdot 73$. Check by Theorem 10.6.3 that this equation does in fact have solutions \((u, v) = (4088, 478), (23360, 2734)\).

10. Make use of the fundamental solution of $x^2 - 73y^2 = 1$, namely, \((a, b) = (2281249, 267000)\), to obtain two sequences of solutions of \((E_{73})\):

 Answer:

 \[
 \begin{align*}
 (4088, 478), (18642443912, 2181933022), (8505611306360808, 9955065049008478), \ldots \\
 (23360, 2734), (106578370640, 12474054766), (48626602888235360, 56912849921762734), \ldots
 \end{align*}
 \]

This means, for example, the sum of the squares of the 73 numbers with center 478 (respectively 2734) is equal to the square of 4088 (respectively 23360).

Even number of consecutive squares

Suppose the sum of the squares of the $2k$ consecutive numbers

\[
\begin{align*}
 b - k + 1, b - k + 2, \ldots, b, \ldots, b + k - 1, b + k,
\end{align*}
\]
is equal to \(a^2\). This means
\[
(2a)^2 - 2k(2b + 1)^2 = \frac{2k}{3}(4k^2 - 1). \quad (E'_k)
\]
Note that the numbers \(2k, 4k^2 - 1\) are relatively prime.

Exercise

1. Show that the equation \((E'_k)^\prime\) has no solution if \(2k\) is a square.

2. Suppose \(2k\) is not a square. Show that if \(2k + 1\) is divisible by 9, or by any prime of the form \(4k + 1\), then the equation \((E'_k)^\prime\) has no solution.

3. Show that for \(k \leq 50\), the equation \((E'_k)^\prime\) has no solution for the following values of \(k\):

\[
k = 3, 4, 5, 9, 11, 13, 15, 17, 21, 23, 24, 27, 29, 31, 33, \\
35, 38, 39, 40, 41, 45, 47, 49.
\]

4. Let \(k\) be a prime. Show that the equation \((E'_k)^\prime\) can be written as
\[
(2b + 1)^2 - 2ky^2 = -\frac{4k^2 - 1}{3}.
\]
By considering Legendre symbols, show that the equation \((E'_k)^\prime\) has no solution for the following values of \(k \leq 50\):

\[
k = 5, 7, 17, 19, 29, 31, 41, 43.
\]

5. By using Theorem 12.3, check that, excluding square values of \(2k < 100\), the equation \((E'_k)^\prime\) has solutions only for \(k = 1, 12, 37, 44\).

The case \(2k = 2\) has been dealt with in \S 12.4, Example 3.

6. Show that \((34, 0), (38, 3), (50, 7)\) are solutions of \((E''_{12})^\prime\). Construct from them three infinite sequences of expressions of the sum of 24 consecutive squares as a square.

Answer:

\[
25^2 + 26^2 + \cdots + 48^2 = 182^2; \\
44^2 + 45^2 + \cdots + 67^2 = 274^2; \\
76^2 + 77^2 + \cdots + 99^2 = 430^2.
\]

7. Show that \((185, 2), (2257, 261), \text{and} (2849, 330)\) are solutions of \((E'_{37})^\prime\). Construct from them three infinite sequences of expressions of the sum of 74 consecutive squares as a square.
14.1 The elliptic curve $y^2 = (x - k)^2 - 4kx^3$

Answer:

\[
225^2 + 226^2 + \cdots + 298^2 = 2257^2; \\
294^2 + 295^2 + \cdots + 367^2 = 2849^2; \\
13096^2 + 13097^2 + \cdots + 13179^2 = 763865^2.
\]

8. Show that and $(242, 4)$ and $(2222,235)$ are solutions of (E'_{44}).

Construct from them two infinite sequences of expressions of the sum of 88 consecutive squares as a square.

Answer:

\[
192^2 + 193^2 + \cdots + 279^2 = 2222^2; \\
5925^2 + 5926^2 + \cdots 6012^2 = 55990^2.
\]

Remark: The equation $(E'_{26}) : x^2 - 52y^2 = 18 \cdot 52 \cdot 53$ does indeed have two infinite sequences of solutions generated by the particular solutions $(338, 36), (2002,276)$, and the fundamental solution $(649,90)$ of the Pell equation $x^2 - 52y^2 = 1$. None of these, however, leads to a solution of (E'_{26}) since all the y’s are even.

Lucas Problem

When does a square pyramid of cannon balls contain a number of cannon balls which is a perfect square? Lucas claimed that the only solutions of

\[1^2 + 2^2 + \cdots + n^2 = k^2\]

are $(n, k) = (1, 1), (24, 70)$. This was established by Watson in 1918.
Pair of Heron triangles with equal areas and equal perimeters

To find a pair of Heron triangles with equal areas and equal perimeters, one of them similar to $(5, 12, 13)$.

The given triangle $(5, 12, 13)$ has $s = 15$ and area 30. Scaled to unit semiperimeter, it has area $k = \frac{2}{15}$.

Consider a point on the elliptic curve

$$(E) : \quad y^2 = (x - k)^2 - 4kx^3.$$

The given triangle has one angle 90° and corresponding “half-tangent” equal to 1. This gives a point P on (E) with $x = 1$. In fact, $P = (1, \frac{7}{15})$.

If we have two points (x_1, y_1) and (x_2, y_2) on (E), the line joining them has slope $m = \frac{y_1 - y_2}{x_1 - x_2}$. It intersects (E) again at a point (x_3, y_3), with

$$x_1 + x_2 + x_3 = \frac{1 - m^2}{4k}.$$

Now, the tangent at P has slope $m = \frac{1}{7}$. Its tangent intersects (E) again at (x_3, y_3), where

$$x_3 = \frac{1 - \left(\frac{1}{7}\right)^2}{4 \cdot \frac{2}{15}} - 2 = \frac{-8}{49}.$$

Correspondingly, $y_3 = \frac{1}{7} \left(\frac{-8}{49} - 1\right) + \frac{7}{15} = \frac{1546}{5145}$. Therefore,

$$2P = \left(-\frac{8}{49}, -\frac{1546}{5145}\right).$$

Now, the line joining P and $2P$ has slope $m = \frac{3947}{5985}$. It intersects (E) again at a point with x-coordinate

$$\frac{1 - \left(\frac{3947}{5985}\right)^2}{4 \cdot \frac{2}{15}} - 1 - \left(\frac{-8}{49}\right) = \frac{10858}{48735}.$$

This is the x-coordinate of the point $3P$. It also means that with $t_1 = \frac{10858}{48735}$, the system of equations

$$\begin{cases}
t_1t_2t_3 = k, \\
t_1(t_2 + t_3) + t_2t_3 = 1,
\end{cases}$$

has rational rational solutions. In fact,

$$t_1 = \frac{10858}{48735}, \quad t_2 = \frac{3477}{7921}, \quad t_3 = \frac{5073}{3721}.$$

From these, we have a triangle with sides $(\frac{2180}{5429}, \frac{36313}{70095}, \frac{68653}{76095})$, semiperimeter 1, and area $\frac{2}{15}$. Magnifying 4641795 times, we obtain the Heron triangle

$$(1863900, 3231857, 4187833; 4641795, 2872834776270).$$

The given triangle $(5, 12, 13)$, magnified 309453 times, gives

$$(1547265, 3713436, 4022889; 4641795, 2872834776270)$$

of the same semiperimeter and area.
Exercises

Problem A1. (a) Prove that there is no Pythagorean triangle with one side of length ≤ 2.
(b) Given an integer $n \geq 3$, construct a Pythagorean triangle with one leg of length n.

Problem A2. (a) Show that the hypotenuse of a Pythagorean triangle cannot be congruent to $3 \pmod{4}$.
(b) For $n \leq 30$, determine if there is a Pythagorean triangle with hypotenuse n. If so, give an example.

<table>
<thead>
<tr>
<th>n</th>
<th>(a, b, c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>none</td>
</tr>
<tr>
<td>2</td>
<td>none</td>
</tr>
<tr>
<td>4</td>
<td>none</td>
</tr>
<tr>
<td>5</td>
<td>(3, 4, 5)</td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n</th>
<th>(a, b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>(18, 24, 30)</td>
</tr>
</tbody>
</table>

(c) Make a conjecture: which integers n can be realized as the hypotenuse of a right triangle?
Problem A3. How many matches of equal length are required to make up the following configuration?

Problem A4. (a) Verify that \((a^2 + b^2)(x^2 + y^2) = (ax - by)^2 + (bx + ay)^2\).

(b) Make use of (a) to express 481 as a sum of two squares in two different ways.

(c) Find all Pythagorean triangles \((a, b, c)\) with \(a < b\) and \(c = 481\). Which of these are primitive?

Problem A5. Let \((a, b, c)\) be a Pythagorean triple. Prove that

(a) at least one of \(a, b, c\) is divisible by 5;

(b) \(abc\) is divisible by 60.

Problem A6. Each of the following is a prime of the form \(4k + 1\).

Write it as a sum of two squares, and find the primitive Pythagorean triangle with this as hypotenuse.
14.1 The elliptic curve $y^2 = (x - k)^2 - 4kx^3$

<table>
<thead>
<tr>
<th>p</th>
<th>$u^2 + v^2$</th>
<th>shorter sides</th>
</tr>
</thead>
<tbody>
<tr>
<td>10009</td>
<td>1002 + 32</td>
<td>9991, 600</td>
</tr>
<tr>
<td>10037</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10061</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10069</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10093</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10133</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10141</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10169</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10177</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10181</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10193</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Problem A7. Make use of the following diagram to prove the irrationality of $\sqrt{2}$.

![Diagram](c) Irrationality of $\sqrt{2}$

Problem A8. Let p and q be positive integers such that the two quadratics $x^2 - px + q$ and $x^2 - px - q$ can both be factored (with integer
coefficients). Show that p and q are respectively the hypotenuse and the area of a Pythagorean triangle.

Problem A9. Here is the smallest square which can be dissected into three Pythagorean triangles and one with integer sides and integer area.

(a) What is the length of a side of the square?
(b) What are the lengths of the sides of the Pythagorean triangles?
Problem A10 (Optional).

\[
\begin{array}{|l|l|l|l|l|l|l|}
\hline
\text{perimeter} & m + n & 2m & m & n & a & b & c \\
\hline
1716 & 33 & & & & & & \\
 & 39 & & & & & & \\
14280 & 85 & & & & & & \\
 & 105 & & & & & & \\
 & 119 & & & & & & \\
317460 & 407 & & & & & & \\
 & 429 & & & & & & \\
 & 481 & & & & & & \\
 & 555 & & & & & & \\
1542684 & 899 & & & & & & \\
 & 957 & & & & & & \\
 & 1023 & & & & & & \\
 & 1131 & & & & & & \\
 & 1209 & & & & & & \\
6240360 & 1785 & & & & & & \\
 & 1955 & & & & & & \\
 & 1995 & & & & & & \\
 & 2185 & & & & & & \\
 & 2261 & & & & & & \\
 & 2415 & & & & & & \\
19399380 & 3135 & & & & & & \\
 & 3315 & & & & & & \\
 & 3553 & & & & & & \\
 & 3705 & & & & & & \\
 & 3927 & & & & & & \\
 & 4199 & & & & & & \\
 & 4389 & & & & & & \\
\hline
\end{array}
\]

Problem A11 (Optional). In a class in Number Theory the professor gave four students the assignment of finding a fairly large primitive Pythagorean triangle using the well known formula for the legs:

\[
A = 2mn, \quad B = m^2 - n^2, \quad C = m^2 + n^2,
\]

where \(m \) and \(n \) are coprime integers, not both odd. The four students produced four entirely different primitive triangles, but on comparing them it was found that two of them had the same perimeter, while the other two also had the same perimeter, this perimeter differing from the
first one by 2. This interested the class greatly, and much time was spent in an effort to find other such sets, only to discover that there were only four such sets with perimeters less than 500,000. Can you find at least one such set?

<table>
<thead>
<tr>
<th>perimeter</th>
<th>(m + n)</th>
<th>(2m)</th>
<th>(m)</th>
<th>(n)</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>117390</td>
<td>273</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>301</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>117392</td>
<td>253</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>319</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>313038</td>
<td>459</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>527</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>313040</td>
<td>455</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>559</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>339150</td>
<td>425</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>475</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>525</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>339152</td>
<td>451</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>517</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>371448</td>
<td>469</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>603</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>371450</td>
<td>437</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>475</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>575</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Problem A12 (Optional). Cross number puzzle on primitive Pythagorean triples.

\[
\begin{align*}
1B, 3D, 9B & \quad 29B, 7A, 21D & \quad 12B, 11U, 20U \\
2D, 6D, 5B & \quad 19U, 15D, 7D & \quad 22D, 18B, 15U \\
27A, 2D, 26D & \quad 20A, 8D, 8A & \quad 16A, 31A, 33A \\
5D, 3A, 25B & \quad 30D, 14A, 9A & \quad 16B, 24D, 23B \\
28D, 35A, 3U & \quad 30U, 9U, 13D & \quad 22A, 32U, 32D \\
4U, 21A, 21D & \quad 19U, 17D, 10A & \quad 32U, 34A, 33A
\end{align*}
\]

The answers are distinct 2- and 3-digit decimal numbers, none beginning with zero. Each of the above sets of answers is a primitive
14.1 The elliptic curve \(y^2 = (x - k)^2 - 4kx^3 \)

Pythagorean triple, in increasing size, so that the third member is the hypotenuse.

\[A = \text{across}, \quad B = \text{back}, \quad D = \text{down}, \quad U = \text{up}. \]

For example, \(1B\) has its tens and units digits in the squares labeled 2 and 1 respectively; \(11U\) is a 3-digit number with its tens and units digits in squares 16 and 11 respectively.

Problem B1.

(a) Find an integer right triangle such that the hypotenuse minus each of the sides gives a cube.

(b) Find an integer right triangle such that the hypotenuse added to each of the sides gives a cube. ¹

Problem B3.

A man has a square field, 60 feet by 60 feet, with other property adjoining the highway. He put up a straight fence in the line of 3 trees, at \(A, P, Q\). If the distance between \(P\) and \(Q\) is 91 feet, and that from \(P\) to \(C\) is an exact number of feet, what is this distance?

Problem B4.

Find the general form of a primitive Pythagorean triangle whose perimeter is a square. Give the smallest one.

Problem B5.

Find the shortest perimeter common to two different

¹These two problems appeared in Diophantus' *Arithmetica.*
primitive Pythagorean triangles.

Problem B6. Solve the equation \(\frac{1}{x^2} + \frac{1}{y^2} = \frac{1}{z^2} \) in positive integers.

Problem B7. It is known that the inradius \(r \) of a triangle with sides \((a, b, c) \) is given by \(r^2 = \frac{(s-a)(s-b)(s-c)}{s} \), where \(s = \frac{1}{2}(a + b + c) \). Determine all integer triangles with inradius 1.

Problem B8. The area \(\triangle \) of a triangle with sides \(a, b, c \) is given by the Heron formula
\[
\triangle^2 = s(s - a)(s - b)(s - c),
\]
where \(s = \frac{1}{2}(a + b + c) \). Determine all integer triangles with area equal to perimeter.

Problem B9. Let \(a, b, c \in \mathbb{Z} \). Prove that the line \(ax + by = c \) is tangent to the unit circle \(x^2 + y^2 = 1 \) if and only if \(a^2 + b^2 = c^2 \).

Problem B10. For each natural number \(n \), how many Pythagorean triangles are there such that the area is \(n \times \) the perimeter?
How many of these are primitive?

Problem B11 (Optional). Show that there are an infinite number of Pythagorean triangles whose hypotenuse is an integer of the form 3333 \(\cdots \) 3.
14.1 The elliptic curve $y^2 = (x - k)^2 - 4kx^3$

Problem B12 (Optional). A lattice triangle is one whose vertices have integer coordinates. Determine all lattice triangles whose sides are tangent to the unit circle $x^2 + y^2 = 1$.

Problem C1. Find a parametrization of the rational points on the circle $x^2 + y^2 = 2$.

Problem C2. For each of the following equations, find a solution in small positive integers.

<table>
<thead>
<tr>
<th>Equation</th>
<th>Positive integer solution (x, y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x^2 - 2y^2 = -1$</td>
<td>$(1, 1)$</td>
</tr>
<tr>
<td>$x^2 - 2y^2 = 1$</td>
<td>$(3, 2)$</td>
</tr>
<tr>
<td>$x^2 - 3y^2 = 1$</td>
<td></td>
</tr>
<tr>
<td>$x^2 - 5y^2 = -1$</td>
<td></td>
</tr>
<tr>
<td>$x^2 - 5y^2 = 1$</td>
<td></td>
</tr>
<tr>
<td>$x^2 - 7y^2 = 1$</td>
<td></td>
</tr>
<tr>
<td>$x^2 - 8y^2 = 1$</td>
<td></td>
</tr>
<tr>
<td>$x^2 - 10y^2 = -1$</td>
<td></td>
</tr>
<tr>
<td>$x^2 - 10y^2 = 1$</td>
<td></td>
</tr>
<tr>
<td>$x^2 - 11y^2 = 1$</td>
<td></td>
</tr>
<tr>
<td>$x^2 - 12y^2 = 1$</td>
<td></td>
</tr>
<tr>
<td>$x^2 - 13y^2 = -1$</td>
<td></td>
</tr>
<tr>
<td>$x^2 - 13y^2 = 1$</td>
<td></td>
</tr>
</tbody>
</table>

Problem C3. (a) For each of the integers $n = 5, \ldots, 34$, write, if possible, n as a sum of consecutive integers.
\[
\begin{array}{ccc}
 n & \text{sum} & n & \text{sum} & n & \text{sum} \\
 5 & 2 + 3 & 6 & 1 + 2 + 3 & 7 & 3 + 4 \\
 8 & & 9 & & 10 & \\
 11 & & 12 & & 13 & \\
 14 & & 15 & & 16 & \\
 17 & & 18 & & 19 & \\
 20 & & 21 & & 22 & \\
 23 & & 24 & & 25 & \\
 26 & & 27 & & 28 & \\
 29 & & 30 & & 31 & \\
 32 & & 33 & & 34 & \\
\end{array}
\]

(b) Make a conjecture on the condition of a positive integer being a sum of consecutive integers (more than one).

(c) Can you prove your conjecture?

Problem C4. Find all rational points on the curve \(x^2 - 2y^2 - 4x - 4y + 2 = 0\).

Problem C5. For each of the following conics, either find a rational point or prove that there are no rational points.

1. \(x^2 + y^2 = 6\).
2. \(3x^2 + 5y^2 = 4\).
3. \(3x^2 + 6y^2 = 4\).

Problem D1.

Accompanying each prime \(p \equiv 1 \pmod{4}\) below is a square root \(q\) of \(-1 \pmod{p}\) with \(q^2 + 1 = mp\). Make use of this information and follow Euler’s proof to write \(p\) as a sum of two squares.
Problem D2.

For each of the following primes $p \equiv 1 \pmod{4}$, write p as a sum of two squares of integers by easy inspection. Make use of this to find a square root of $-1 \pmod{p}$.

<table>
<thead>
<tr>
<th>p</th>
<th>$x^2 + y^2$</th>
<th>square root of $-1 \pmod{p}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>$3^2 + 2^2$</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>113</td>
<td></td>
<td></td>
</tr>
<tr>
<td>137</td>
<td></td>
<td></td>
</tr>
<tr>
<td>149</td>
<td></td>
<td></td>
</tr>
<tr>
<td>157</td>
<td></td>
<td></td>
</tr>
<tr>
<td>173</td>
<td></td>
<td></td>
</tr>
<tr>
<td>181</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Problem D3.
Use Gauss’ lemma to compute the Legendre symbol $(\frac{7}{31})$.

Problem D4.
Show that -3 is a quadratic residue of p if and only if $p = 6n + 1$.

Problem D5.
Show that 5 is a quadratic residue of all primes of the forms $10n \pm 1$, and a quadratic nonresidue of all primes of the form $10n \pm 7$.

Problem D6.
In each of the following cases decide by calculating a Legendre symbol if the congruence is solvable. If so, find the solutions.
(a) \(x^2 \equiv -11 \pmod{59} \);
(b) \(x^2 \equiv 7 \pmod{83} \);
(c) \(x^2 \equiv 73 \pmod{127} \);
(d) \(x^2 \equiv 11 \pmod{37} \).

Problem D7. Show that 6 is a quadratic residue mod 101 and calculate its square roots.

Problem E1. Find the square root of 2 modulo \(p \) for

1. \(p = 17 \)
2. \(p = 19 \)
3. \(p = 23 \)

Problem E2. Let \(p \) be an odd prime. Show that 5 is a quadratic residue modulo \(p \) if and only if \(p \equiv 1, 3, 7, 9 \pmod{20} \).

Problem E3. For each of the following primes, decide if 5 is a quadratic residue modulo \(p \). If so, find a square root of 5 \(\pmod{p} \).

1. \(p = 17 \)
2. \(p = 19 \)
3. \(p = 23 \)
4. \(p = 29 \)

Problem E4. Solve the congruences

(a) \(x^2 \equiv 30 \pmod{113} \). (b) \(x^2 \equiv 7 \pmod{113} \).

Problem E5. (a) Write down the quadratic residues modulo 11.
14.1 The elliptic curve \(y^2 = (x - k)^2 - 4kx^3 \)

(b) For each of the quadratic residue \(a \) modulo 11, find two solutions of the congruence \(x^2 \equiv a \pmod{11} \).

Problem F1.

Let \(a \) be a positive integer. Find the continued fraction expansion of \(\sqrt{a^2 + 1} \) and exhibit its periodicity.

Problem F2.

Let \(a \) be a positive integer. Find the continued fraction expansion of \(\sqrt{a^2 + a} \) and exhibit its periodicity.

Problem F3. Find the continued fraction expansion of \(\sqrt{29} \) and exhibit its periodicity.

Problem F4. Find the continued fraction expansion of \(\sqrt{44} \) and exhibit its periodicity.

Problem F5. Find the continued fraction expansions of the following quadratic irrationals:

\((i) \frac{1}{4}(\sqrt{5} + 1), \quad (ii) \sqrt{51}, \quad (iii) \sqrt{71}. \)

Problem F6. Let \(d = 14 \). Determine

(i) the continued fraction expansion of \(\sqrt{d} \);
(ii) the fundamental solution of the Pell equation \(x^2 - dy^2 = 1 \);
(iii) the complete solution of the Pell equation \(x^2 - dy^2 = 1 \) in the form of a recurrence relation;
(iv) the second and third smallest solution of the equation \(x^2 - dy^2 = 1 \).

Problem F7. Let \(d = 13 \). Determine

(i) the continued fraction expansion of \(\sqrt{d} \);
(ii) the fundamental solution of the Pell equation \(x^2 - dy^2 = 1 \);
(iii) the complete solution of the Pell equation $x^2 - dy^2 = -1$ in the form of a recurrence relation;
(iv) the second and third smallest solution of the equation $x^2 - dy^2 = -1$.

Problem F8. The n–th triangular number is given by $T_n = \frac{1}{2}n(n + 1)$. Find all integers n for which the sum of the $(n - 1)$–st, the n–th, and the $(n + 1)$–st triangular numbers is a square.

Problem F9. The pentagonal numbers are the sums of the arithmetic progression
$$1 + 4 + 7 + \cdots + (3n - 2) + \cdots$$

The nth pentagonal number is $P_n = \frac{1}{2}n(3n - 1)$. Find all integers n for which P_n is a square.

Problem F10.

1. A developer wants to build a community in which the n (approximately 100) homes are arranged along a circle, numbered consecutively from 1, 2, \ldots n, and are separated by the club house, which is not numbered. He wants the house numbers on one side of club house adding up to the same sum as the house numbers on the other sides. Between which two houses should he build the club house? How many houses are there altogether?

2. Later the developer finds out that government law requires the club house also has to be numbered. If he wants to maintain equal house number sums on both sides, he finds that he has to build significantly fewer homes. How many homes should he build, and what is the number of the club house?
Bibliography

[Articles]

There is no cyclic quadrilateral whose sides are integers in arithmetic progression and whose area is an integer. This is a consequence of Euler’s theorem that the product of four distinct nonzero integers in arithmetic progression cannot be a square.

[20] P. W. Wade and

[More remote references]

