The Distribution of the Size of the Intersection of a k-Tuple of Intervals

Vladimir Bozovic, Shanzhen Gao, and Heinrich Niederhausen
Florida Atlantic University, Boca Raton

Abstract

Let $(I_1, I_2, ..., I_k)$ be a random k-tuple of subintervals of the discrete interval $[1, n]$, and L_n the random variable that measures the size of their intersection. We derive the exact and asymptotic distribution of L_n under the assumption of equally likely drawn k-tuples. The enumeration of such k-tuples and refinements of the given statistic lead to interesting relations to other topics, like octahedral numbers and bipartite graphs.

1 Introduction

How do we decide whether a sequence of subintervals from $[1, n] = \{1, \ldots, n\}$ is “random”, i.e., independently and equally likely drawn from all $\left(\frac{n+1}{2}\right)^k$ subintervals, if all we get to see is the size of their intersection? This paper was motivated by investigating the distribution of the intersection size of k subintervals of $[1, n]$. For example, if 5 subintervals from $[1, 10]$ intersect in 4 or more points, we can be 99.5% certain that they are not randomly generated. Alternatively, suppose we can draw the subintervals one after the other. If n is larger than 4, and the first 10 intervals still have a nonempty intersection, we can be more than 99% sure that the intervals are not random. We will see in Section 6 that the probability of drawing k intersecting intervals approaches $2^k / \binom{2k}{k} \approx 2^{-k} \sqrt{k} \pi$ for $n \to \infty$.

Let $\Lambda_{n,l} := \{(I_1, I_2, ..., I_k) \mid I_j$ is a subinterval of $[1, n]$ for all $j \in [1, k]$, and $\bigcap_{j=1}^{k} I_j = l\}$. The enumeration begins with the basic observation in Section 2 that $\Lambda_{n,l} = \Lambda_{n+1-l,1}$ for $l > 0$. Whenever feasible, we will therefore write Λ_j^k instead of $\Lambda_{j;1}^k$. In this notation

$$
\Pr(\text{The size of the intersection of 5 subintervals of } [1, 10] \text{ is } 4 \text{ or larger})
= \left(\frac{11}{2}\right)^{-5} \sum_{l=4}^{10} |\Lambda_{11-l,1}^5| = 0.00474
$$

using one of the many formulas we will derive for $|\Lambda_{n,1}^k|$.
A combinatorial interpretation of the coefficients (called $c(p,k)$) of $\binom{n}{k}$ in the expansion of Λ_k^n will be given in Section 4.1. We found the (octahedral) numbers $|\Lambda^2_n|$ especially noteworthy; they are discussed in Section 3.

Expanding $|\Lambda^k_n|$ in powers of n shows another interesting feature:

$$|\Lambda^2_n| = \frac{1}{3} n + \frac{2}{3} n^3, \quad |\Lambda^3_n| = \frac{1}{2} n + \frac{1}{2} n^3 + \frac{3}{5} n^5,$$

$$|\Lambda^4_n| = \frac{4}{35} n^7 + \frac{4}{35} n^7 + \frac{2}{5} n^5 + \frac{23}{105} n, \quad |\Lambda^5_n| = \frac{2}{7} n - \frac{5}{126} n^3 + \frac{1}{3} n^5 + \frac{5}{21} n^7 + \frac{5}{126} n^9.$$

Only odd powers of n occur in those expansion; however, the negative coefficient in $|\Lambda^5_n|$ discourages a search for combinatorial significance. It turns out that the Bernoulli numbers B_k are to blame (Section 5); on the other hand, they give us a rather precise approximation of our numbers, $|\Lambda^k_n| \approx \frac{\left(\binom{n+1}{2k+1}-2n^{2k+1}+(n-1)^{2k+1}\right) k!}{(2k+1)!} - \frac{2^{(n+1)^k-2(n^k+(n-1)^k)}B_{k+1}}{k+1}$ for odd k, and a similar approximation for even k (Corollary 9). The numerical experiments hint at another expansion again in odd degrees but of a different basis,

$$|\Lambda^2_n| = \binom{n}{1} + 4\binom{n+1}{3}, \quad |\Lambda^3_n| = \binom{n}{1} + 12\binom{n+1}{5} + 36\binom{n+2}{5},$$

$$|\Lambda^4_n| = \binom{n}{1} + 28\binom{n+1}{7} + 240\binom{n+2}{7} + 576\binom{n+3}{7}.$$

Those coefficients are indeed positive integers, and they are derived in Section 5.1. The most detailed refinement of Λ^k_n that we consider is the number of all k-tuples that intersect in the single number p, consist of h different subintervals, and have u left endpoints and v right endpoints. The number of such k-tuple of subintervals equals \(\binom{p-1}{w-1}\binom{n-p}{v-1}\) $B(u, v, h)S(k, h)!$, (Section 4.3), where $S(k, h)$ stands for the Stirling numbers of the second kind, and $B(u, v, h)$ is the number of ways to select h elements from an $u \times v$ matrix such that at least one element
is chosen from each row and each column. At the same time, the numbers $B(u, v, h)$ are the connection coefficients in the product formula

$$
\binom{mn}{h} = \sum_{i=0}^{m} \sum_{j=0}^{n} \binom{m}{i} \binom{n}{j} B(i, j, h)
$$

bringing a combinatorial interpretation to a rather bland application of linear algebra (Remark 6). There is a closely related second interpretation of this formula in terms of bipartite graphs (Remark 5).

Deriving the size of the intersection is a classical topic in computer science; an algorithm was presented by McCreight [3]. For most of our expansions we need properties of Stirling numbers. Jacobo Stirling published the first table of “his” numbers in 1730, and a systematic treatment of Stirling numbers appeared in Jordan’s Calculus of Differences [2] 200 years later. However, for convenience and accessibility we will refer to R. Stanley’s text book, Enumerative Combinatorics I, whenever possible.

2 Two Basic Observations

The following two simple lemmas are the basis for our combinatorial approaches.

Lemma 1 $\Lambda^k_{p,l} = \Lambda^k_{n+1-l;1}$ for $l > 0$

Proof. It suffices to show that $\Lambda^k_{n,l} = \Lambda^k_{n-1,l-1}$ for $l > 1$. Suppose $(I_1, I_2, ..., I_k)$ is a k-tupel of subintervals of $[1, n]$, and $\bigcap_{j=1}^{k} I_j = l$. The intersection is again an interval, and let r be the right endpoint of this interval. Now remove r from each of the k intervals, and decrease all elements larger than r by 1. This way all k intervals are mapped into subintervals of $[1, n-1]$, and their intersection has size $l - 1$. Vice versa, we can any k-tupel from $\Lambda^k_{n-1,l-1}$ to a k-tupel by increasing all numbers larger than the right endpoint of the $l - 1$-element intersection interval by 1, and enlarging the intersection interval by 1 at the right end.

Sequences of subintervals from $[1, n]$ are nothing but sequences of ordered pairs of endpoints. The following lemma translates the intersection cardinality into a condition on the endpoints.

Lemma 2 Let $I_j = [l_j, r_j], j = 1, 2, ..., k$ be intervals such that $I_j \subseteq [1, n]$. Then

$$
x \in \bigcap_{j=1}^{k} I_j \Leftrightarrow \max_{1 \leq i \leq k} \{l_j\} \leq x \leq \min_{1 \leq j \leq k} \{r_j\}
$$

Furthermore,

$$
\big| \bigcap_{j=1}^{k} I_j \big| = l \Leftrightarrow \min_{1 \leq j \leq k} \{r_j\} - \max_{1 \leq i \leq k} \{l_j\} = l - 1
$$
Proof. The lemma follows because

\[x \in \bigcap_{j=1}^{k} I_j \iff l_j \leq x \leq r_j, \quad j = 1, \ldots, k \iff \max_{1 \leq i \leq k} \{l_i\} \leq x \leq \min_{1 \leq j \leq k} \{r_j\} \]

\[\blacksquare\]

3 Octahedral Numbers

Let \(\Lambda_n^2 \) be the set of pairs of discrete subintervals of \([1, n]\) that intersect in one point. If \(I = [a, b] \) is the first and \(J = [c, d] \) the second interval, then we have following situations for which \(|I \cap J| = 1 \),

\[
\begin{align*}
 a &= b = c = d \\
 a &= b = c < d, \quad c = d = a < b, a < b = c = d, c < d = a = b \\
 a < b = c < d, c < d = a < b, a < c = d < b, c < a = b < d
\end{align*}
\]

Considering the number of different points (1, 2 or 3) in the above cases it is easy to see that

\[|\Lambda_n^2| = \binom{n}{1} + 4\binom{n}{2} + 4\binom{n}{3} \]

If we rearrange the expression on the right hand side, we get the well known octahedral numbers

\[1 + 2^2 + \ldots + (n - 1)^2 + n^2 + (n - 1)^2 + \ldots + 2^2 + 1 \]

A bijection between \(\Lambda_n^2 \) and the discrete octahedron with an \(n \times n \) center square can be obtained as follows. Let \(x \wedge y := \min \{x, y\} \). In the Euclidean 3-space \(\mathbb{Z}^3 \) we represent the octahedron as a union of squares (layers)

\[A_l = \{(x, y, l) \mid ||l|| < (x \wedge y) \leq n, \quad x, y \in \mathbb{N}\} \]

for \(l \in [-n + 1, n - 1] \).
Each layer A_l contains $(n - |l|)^2$ points with integral coordinates. Therefore,
\[
\sum_{l=-n+1}^{n+1} |A_l| = 1 + 2^2 + \ldots + (n-1)^2 + n^2 + (n-1)^2 + \ldots + 2^2 + 1
\]

Consider the mapping $\Theta : \bigcup_{l=-n+1}^{n-1} A_l \rightarrow \Lambda_n^2$ defined as
\[
\Theta(x, y, l) = \begin{cases}
([x \land y, x], [l, y]) & \text{if } l < 0 \\
([x \land y, y], [x \land y, x]) & \text{if } l = 0 \\
([l, y], [x \land y, x]) & \text{if } l > 0
\end{cases}
\]

Obviously
\[
\Theta(x, y, l) = \Theta(x_1, y_1, l) \Rightarrow (x, y) = (x_1, y_1)
\]
for all $l \in [-n + 1, n - 1]$. Hence Θ is injective. Consequently, define $\Theta^{-1} : \Lambda_n^2 \rightarrow \bigcup_{l=-n+1}^{n-1} A_l$ by
\[
\Theta^{-1}([l_1, r_1], [l_2, r_2]) = \begin{cases}
(r_1, r_2, -l_2) & \text{if } l_2 < l_1 \\
(r_1, r_2, 0) & \text{if } l_2 = l_1 \\
(r_2, r_1, l_1) & \text{if } l_1 < l_2
\end{cases}
\]

Again, it is easy to check that Θ^{-1} is injective. We show that Θ is a bijection by proving that Θ^{-1} is indeed its inverse. Let $(x, y, l) \in A_l$, thus $|l| < (x \land y) \leq n$.
If $l > 0$, then $\Theta^{-1}(\Theta((x, y, l))) = \Theta^{-1}([l, y], [x \land y, x]) = (x, y, l)$.
If $l < 0$ then $\Theta^{-1}(\Theta(x, y, l)) = \Theta^{-1}([x \land y, x], [l, y]) = (x, y, -|l|)$.
If $l = 0$ then $\Theta^{-1}(\Theta(x, y, 0)) = \Theta^{-1}([x \land y, x], [x \land y, y]) = (x, y, 0)$.

4 The General Case

From Lemma 2 follows that $(I_1, I_2, \ldots, I_k) \in \Lambda_n^k$ iff
\[
\max_{1 \leq j \leq k} \{l_j\} = \min_{1 \leq j \leq k} \{r_j\}
\]
where l_j are the left endpoints and r_j are the right endpoints of the intervals $I_j = [l_j, r_j]$ in this k-tuple. Suppose the intervals intersect in $p \in [1, n]$. The number of ways the left endpoint can be chosen equals the number $p^k - p^{k-1}$ of mappings from $[1, k]$ to $[1, p]$ that contain p as an image. Interpreting the right endpoints in the same way shows that
\[
|\Lambda_n^k| = \sum_{p=1}^{n} \left(p^k - (p-1)^k \right) \left((n+1-p)^k - (n-p)^k \right)
\]

This is probably the most “basic” answer to our problem. It hides the polynomial character of the numbers $|\Lambda_n^k|$, which will become more apparent in the following refinements of the problem.
Note that
\[
\sum_{l=1}^{n} |\Lambda^k_l| = \sum_{p=1}^{n} \left(p^k - (p - 1)^k \right) \sum_{l=p}^{n} \left((l + 1 - p)^k - (l - p)^k \right) = \sum_{p=1}^{n} \left(p^k - (p - 1)^k \right) (n + 1 - p)^k
\] (2)

This sum plays a role in determining the probability of selecting \(k \) nonintersecting subintervals (Section 6).

4.1 Endpoint Sets

Consider the mapping \(\Phi : \Lambda^k_n \to [1, n] \) defined as
\[
\Phi([l_1, r_1], [l_2, r_2], ..., [l_k, r_k]) = \bigcup_{i=1}^{k} \{l_i, r_i\}.
\]
The set on the right-hand side in the argument of the mapping \(\Phi \) we will call the endpoint set of the \(k \)-tuple. We know from Lemma 2 that
\[
\Phi([l_1, r_1], [l_2, r_2], ..., [l_k, r_k]) = [1, m].
\]
and we can divide set \(\Lambda^k_n \) into equivalence classes regarding different endpoint sets. We are interested in the sizes of those equivalence classes, i.e., we want to find \(|\Phi^{-1}\{i_1, i_2, ..., i_m\}| \) where \(\{i_1, i_2, ..., i_m\} \subseteq [1, n] \) for some fixed \(m \), such that \(1 \leq m \leq 2k - 1 \). Without loss of generality we can assume that \(\{i_1, i_2, ..., i_m\} = [1, m] \). Therefore, we want the number of all \(k \)-tuples from \(\Lambda^k_n \) such that
\[
\Phi([l_1, r_1], [l_2, r_2], ..., [l_k, r_k]) = [1, m].
\]
Denote this number as \(c(m, k) = |\Phi^{-1}[1, m]| \). For finding this number it is helpful to notice that
- every number from \([1, m]\) has to occur in the corresponding \(k \)-tuple \(([l_1, r_1], [l_2, r_2], ..., [l_k, r_k]) \in [1, m] \) at least once.
- since \(k \)-tuples from \(\Phi^{-1}[1, m] \) intersect in one point, that intersection point must be in the set \([1, m]\).

Suppose that \(\bigcap_{j=1}^{k} [l_j, r_j] = \{p\} \), where \(p \in [1, m] \). From \(\max_{1 \leq j \leq k} \{l_j\} = p = \min_{1 \leq j \leq k} \{r_j\} \) (Lemma 2) follows \(\{l_1, l_2, ..., l_k\} = [1, p] \) and \(\{r_1, r_2, ..., r_k\} = [p, m] \). Denote the number of occurrences of \(i \in [1, p] \) among the left end \(k \)-tuple \((l_1, l_2, ..., l_k) \) as \(t_i \). Therefore, \(t_1 + t_2 + ... + t_p = k \) where \(t_i \geq 1 \) for all \(i \in [1, p] \). For every such composition \(t_1 + t_2 + ... + t_p = k \) we have \(\binom{k}{t_1, t_2, ..., t_p} \) different orders of left endpoints. Similarly, we have \(\binom{k}{w_p, w_p+1, ..., w_m} \) different
orders of right endpoints for the composition \(w_p + w_{p+1} + \ldots + w_m = k \), where \(w_i \) represents the number of occurrences of \(i \in [p, m] \) among the right endpoint \(k \)-tuple \((r_1, r_2, \ldots, r_k) \). Thus

\[
c(m, k) = \sum_{p=1}^{m} \sum_{t_u \geq 1, t_1 + t_2 + \ldots + t_p = k} \binom{k}{t_1, t_2, \ldots, t_p} \times \sum_{w_v \geq 1, w_p + w_{p+1} + \ldots + w_m = k} \binom{k}{w_p, w_{p+1}, \ldots, w_m}
\]

It is well known [2 § 60] that

\[
\sum_{t_u \geq 1, t_1 + t_2 + \ldots + t_p = k} \binom{k}{t_1, t_2, \ldots, t_p} = p! S(k, p) = \sum_{j=0}^{p} \binom{p}{j} (-1)^{p-j} j^k,
\]

the Stirling number of the second kind. Indeed, this may be seen as a direct consequence of the exponential generating function of the Stirling numbers of the second kind (as in Jordan’s book), or as an application of the multinomial formula and the exclusion-inclusion principle. Hence

\[
c(m, k) = \sum_{p=1}^{m} p! S(k, p)(m + 1 - p)! S(k, m + 1 - p) \quad (3)
\]

Now we can easily evaluate the number of all \(k \)-tuples from the set \(\Lambda_n^k \) that intersect in \(m \) as \(\binom{n}{m} c(m, k) \). As we noticed earlier, \(1 \leq m \leq 2k - 1 \), hence

\[
|\Lambda_n^k| = \sum_{m=1}^{2k-1} \binom{n}{m} c(m, k) = \sum_{m=1}^{2k-1} \binom{n}{m} \sum_{p=1}^{m} p! S(k, p)(m + 1 - p)! S(k, m + 1 - p) \quad (4)
\]

This formula for \(|\Lambda_n^k| \) makes it obvious that \(|\Lambda_n^k| \) can be extended to a polynomial \(\lambda_{2k-1}(n) \) of degree \(2k - 1 \) in \(n \).

Remark 3 Formula (3) motivates us to interpret the total number of different orders of left endpoints of \(k \)-tuples from \(\Phi^{-1}[1, m] \) intersecting in \(\{p\} \), as the number of surjective mappings from the set \(\{l_1, l_2, \ldots, l_k\} \) to the set \([1, p] \). That number is equal to \(p! S(k, p) \) (see [2 1.4]), and similarly for right endpoints the number of surjections from \(\{r_1, r_2, \ldots, r_k\} \) to \([p, m] \) equals \((m + 1 - p)! S(k, m + 1 - p) \).

4.2 Geometric Interpretation

We will map intervals to points via the mapping \(F : \{(i, j) \mid [i, j] \subseteq [1, n] \} \rightarrow \{(i, j) \mid 1 \leq i \leq j \leq n \} \) defined as \(F([i, j]) = (i, j) \). Clearly, \(F \) is a bijection between the set of all subintervals of \([1, n]\) and a discrete right triangle in the coordinate plane. This bijection provides a geometric interpretation of our problem. As we pointed out earlier, every \(k \)-tuple from the set \(\Lambda_n^k \) must have an intersection in \(1, 2, \ldots \) or \(n \). Suppose the \(k \)-tuple \(([l_1, r_1], [l_2, r_2], \ldots, [l_k, r_k]) \) intersects in \(\{p\} \). Then we know that \(\max_{1 \leq j \leq k} l_j = p = \min_{1 \leq j \leq k} r_j \). This means that every interval \([l_i, r_i]\) from the observed \(k \)-tuple is mapped by \(F \) to the point \((l_i, r_i)\) in the rectangle \(R_p = \{(i, j) \mid 1 \leq i \leq p \leq j \leq n \} \).
Conversely, every choice of \(k \) points (with multiplicities) from the rectangle \(R_p \) containing at least one point with first coordinate equal to \(p \), and one point with second coordinate equal to \(p \), will give us a \(k \)-tuple that intersects in \(\{p\} \). Notice that the number of different points which we take from \(R_p \) in this way equals the number of different intervals in the \(k \)-tuple that intersect in \(p \). This leads us to a new way of expressing the cardinality of the set \(\Lambda^k_n \). In the following subsection we will obtain the cardinality of \(\Lambda^k_n \) by summing up the number of all \(k \)-tuples which consist of \(h \) different intervals, \(h = 1, 2, \ldots, k \).

4.2.1 Number of all \(k \)-tuples consisting of \(h \) different intervals

Consider the mapping \(\Gamma : \Lambda^k_n \to \mathbb{N} \) defined as

\[
\Gamma(I_1, I_2, \ldots, I_k) = |\{I_1, I_2, \ldots, I_k\}|
\]

This mapping brakes \(\Lambda^k_n \) into equivalence classes such that \(\Lambda^k_n = \bigcup_{h=1}^{k} \Gamma^{-1}(h) \), which implies \(|\Lambda^k_n| = \sum_{h=1}^{k} |\Gamma^{-1}(h)| \). Let us investigate the size of \(|\Gamma^{-1}(h)| \). As we already know, the intersection of every tuple from \(\Gamma^{-1}(h) \) must be an element of \([1, n] \). Suppose the \(k \)-tuple intersects in some number \(p \). We count the number of all \(k \)-tuples which intersect in \(p \) and consists of exactly \(h \) different intervals. Going back to the geometric interpretation, denote by \(T(p, h) \) the number of ways of choosing \(h \) different points from the rectangle \(R_p \) such that at least one is chosen with \(x \)-coordinate \(p \), and at least one with \(y \)-coordinate \(p \). It is not difficult to see, by the inclusion-exclusion principle, that:

\[
T(p, h) = \binom{p(n-p+1)}{h} - \binom{(p-1)(n-p+1)}{h} - \binom{p(n-p)}{h} + \binom{(p-1)(n-p)}{h}
\]

From \(h \) different intervals we can make \(h!S(k, h) \) different \(k \)-tuples. Therefore, the number of \(k \)-tuples from the set \(\Gamma^{-1}(h) \) which intersect in \(p \) is \(T(p, h)h!S(k, h) \). It follows that

\[
|\Gamma^{-1}(h)| = \sum_{p=1}^{n} T(p, h)h!S(k, h)
\]
and

$$|\Lambda_n^k| = \sum_{h=1}^{k} |\Gamma^{-1}(h)| = \sum_{h=1}^{k} \sum_{p=1}^{n} T(p, h) h! S(k, h) =$$

$$= \sum_{h=1}^{k} \sum_{p=1}^{n} \left(\binom{p(n-p+1)}{h} - \binom{(p-1)(n-p+1)}{h} \right) - \binom{p(n-p)}{h} + \binom{(p-1)(n-p)}{h} \right) h! S(k, h)$$

4.3 The Number of k-Tuples from $\Gamma^{-1}(h)$ Determined by the Number of Left and Right Endpoints

All refinements of $|\Lambda_n^k|$ so far seem to indicate that Stirling numbers of the second kind are an unavoidable component. However, if we want to calculate the number of all k-tuples from $\Gamma^{-1}(h)$ such that $|\{l_1, l_2, ..., l_k\}| = u$ and $|\{r_1, r_2, ..., r_k\}| = v$ then the Stirling numbers of the first kind will appear in this refinement of the formula for $|\Lambda_n^k|$. This leads us to a new approach in calculating $|\Lambda_n^k|$. We use the standard method for determining the number of k-tuples which satisfy some conditions, by dividing them into disjoint subsets regarding the intersection point. Therefore, for the purpose of finding all k-tuples from $\Gamma^{-1}(h)$ with a fixed number of left endpoints u and a fixed number of right endpoints v, we first observe just those that intersect in a given number p. In our geometric interpretation this means that we are choosing h different points from R_p such that at least one is chosen from column p (i.e., with x-coordinate p), and at least one from row p (with y-coordinate p). In addition, the number of selected columns (number of left endpoints) from R_p has to be exactly u, and the number of rows (the number of right endpoints) from R_p has to be exactly v.

Selecting h Points from R_p

Since we must always choose column p and row p, we conclude that we have to choose another $u-1$ columns and $v-1$ rows. In how many different ways can this be done? The answer to this question is related to the answer of the next problem.
The disappearing matrix Consider a matrix of dimension $i \times j$. We select h elements from the matrix and erase every row and column that contain any of the h elements. In how many different ways can we select h elements such that the whole matrix must be erased? Denote this number of ways by $B(i, j, h)$. Notice that $B(i, j, h) = B(j, i, h)$.

We call any two sets of h matrix elements from an $m \times n$ matrix equivalent, if they erase the same submatrix. If the erased submatrix has i rows and j columns, then the size of the corresponding equivalence class is $B(i, j, h)$. An $m \times n$-matrix has $\binom{m}{i} \binom{n}{j}$ submatrices of size $i \times j$. Hence our partitioning of the $\binom{mn}{h}$ subsets of h matrix elements into equivalence classes shows that

$$\binom{mn}{h} = \sum_{i=0}^{m} \sum_{j=0}^{n} \binom{m}{i} \binom{n}{j} B(i, j, h)$$

(5)

Remark 4 Let $p_h(x) := \binom{x}{h}$, a polynomial of degree h in x. The sequence $(p_h)_{h \geq 0}$ is an example of an important class, the polynomials of binomial type, for which the “binomial theorem” holds,

$$p_h(m + n) = \sum_{i=0}^{h} p_i(m) p_{h-i}(n)$$

Of course, $x^h / h!$ is the most prominent member of this family. However, $\binom{x}{h}$ is a “product formula”, and such formulas are usually more difficult to obtain, with one notable exception, x^h. We will give an algebraic proof of (5) in Remark 6 below that will uncover the actual multiplication step $(mn)^h = m^n h^h$ in this formula.

Remark 5 From the definition of $B(i, j, h)$ it is easy to see that $B(i, j, h)$ is also the number of bipartite labelled simple graphs $G([i], [j]; [h])$ without isolated vertices, vertex sets of cardinality i and j, respectively, and edge set of size h. The product formula (5) gives the number of graphs $G([n], [m]; [h])$ (isolated vertices allowed). Summing over the number of edges results in the well known formula 2^{nm} for the number of bipartite labelled simple graphs with vertex sets of cardinality m and n, respectively. See [4] for more general results on the enumeration of k-colored labelled graphs.

Let us suppose for a moment that we have an explicit form of the numbers $B(u, v, h)$. Now the problem of finding the number of all k-tuples from $\Gamma^{-1}(h)$ with u left endpoints and v right endpoints becomes much easier. Let us consider those k-tuples that intersect in the number p. As we explained before, it is enough to take $u - 1$ columns and $v - 1$ rows from R_p. Therefore, we select some matrix of dimension $u \times v$, and h points which we take in order to “erase” the whole matrix. It follows that

$$\binom{p - 1}{u - 1} \binom{n - p}{v - 1} B(u, v, h)$$

is the number of ways of choosing h points from the rectangle R_p such that they take exactly u columns and v rows including row p and column p. As we saw before, h different intervals can be copied to k places in $S(k, h) h!$ different ways, which is simply the number of surjective mappings from a k element set to an h element set. Finally,

$$\binom{p - 1}{u - 1} \binom{n - p}{v - 1} B(u, v, h) S(k, h) h!$$
is the number of all \(k \)-tuples that intersect in \(p \), consist of \(h \) different subintervals, have \(u \) left endpoints and \(v \) right endpoints. From this very detailed statistic on the \(k \)-tuples we can obtain many results. For example, if we sum over the intersection point \(p \), we get the number

\[
\sum_{p=1}^{n} \binom{p-1}{u-1} \frac{1}{n-p} \binom{n-p}{v-1} B(u,v,h) S(k,h) h! = \binom{n}{v+u-1} B(u,v,h) S(k,h) h! \tag{6}
\]

of all \(k \)-tuples from \(\Lambda^k_n \) that belong to \(\Gamma^{-1}(h) \) (consist of \(h \) different intervals) having \(u \) left endpoints and \(v \) right endpoints.

If we sum \((6) \) over the number \(u \) of left endpoints, we get the number

\[
\sum_{u=1}^{k} \binom{n}{v+u-1} B(u,v,h) S(k,h) h!,
\]

of all \(k \)-tuples which belong to \(\Gamma^{-1}(h) \), and have exactly \(v \) right endpoints.

If we sum \((6) \) over the number of left and right endpoints, we obtain the number of all \(k \)-tuples from \(\Lambda^k_n \) which belong to \(\Gamma^{-1}(h) \),

\[
|\Gamma^{-1}(h)| = \sum_{u=1}^{k} \sum_{v=1}^{k} \binom{n}{v+u-1} B(u,v,h) S(k,h) h!.
\]

If we keep the number of endpoints fixed, and sum \((6) \) over the number \(h \) of different intervals, then we obtain the number

\[
\sum_{h=1}^{k} \binom{n}{v+u-1} B(u,v,h) S(k,h) h! \tag{7}
\]

of all \(k \)-tuples from \(\Lambda^k_n \) that have exactly \(u \) left endpoints and \(v \) right endpoints.

Finally, we find \(|\Lambda^k_n| \),

\[
|\Lambda^k_n| = \sum_{h=1}^{k} \sum_{v=1}^{k} \sum_{u=1}^{k} \binom{n}{v+u-1} B(u,v,h) S(k,h) h! \tag{8}
\]

Evaluating \(B(u,v,h) \)
As we already noticed in \((6) \), the number of all \(k \)-tuples from \(\Lambda^k_n \) that have exactly \(u \) left endpoints and \(v \) right endpoints equals

\[
\left(\binom{n}{u+v-1} \right) \sum_{h=1}^{k} B(u,v,h) S(k,h) h! \]

On the other hand, the number of all \(k \)-tuples from \(\Lambda^k_n \) that have exactly \(u \) different left endpoints and \(v \) different right endpoints can be evaluated as follows. Every \(k \)-tuple with \(u \)
left endpoints and \(v \) right endpoints takes exactly \(u + v - 1 \) numbers from \([1, n]\) (remember that left and right endpoints must overlap in one point). Therefore, we can choose \(\binom{n}{u+v-1} \) different subsets of \([1, n]\) to construct \(k \)-tuples of this type. The left endpoints take the first \(u \) places; this can be done in \(u!S(k, u) \) different ways. Similarly, there are \(v!S(k, v) \) ways to arrange the right endpoints. Therefore, the number of all \(k \)-tuples from \(\Lambda^k_n \) that have exactly \(u \) left endpoints and \(v \) right endpoints is

\[
\binom{n}{u+v-1} u!S(k, u)v!S(k, v).
\]

Comparing the last two formulas, we see that

\[
\sum_{h=1}^{k} B(u, v, h)S(k, h)h! = u!S(k, u)v!S(k, v)
\]

The well known inversion formula for Stirling numbers \([5, \text{Prop. 1.4.1}]\) shows that

\[
B(u, v, h) = \frac{u!v!}{h!} \sum_{r=0}^{h} s(h, r)S(r, u)S(r, v)
\]

where \(s(h, i) \) stands for the (alternating) Stirling numbers of the first kind.

Remark 6 We can now verify the product formula \([5]\).

\[
\sum_{i=0}^{m} \sum_{j=0}^{n} \binom{m}{i} \binom{n}{j} B(i, j, h) = \sum_{i=0}^{m} \sum_{j=0}^{n} \binom{m}{i} \binom{n}{j} \frac{i!j!}{h!} \sum_{r=0}^{h} s(h, r)S(r, i)S(r, j)
\]

\[
= m!n! \sum_{r=0}^{h} \frac{s(h, r)}{h!} \sum_{i=0}^{m} \frac{S(r, i)}{(m-i)!} \sum_{j=0}^{n} \frac{S(r, j)}{(n-j)!}
\]

From \(\sum_{i=0}^{m} \frac{S(r, i)}{(m-i)!} = \frac{e^x - 1}{m!} \) and \(\sum_{r=0}^{h} \frac{s(h, r)}{h!} x^r = \binom{x}{h} \) (see \([5, \text{1.4}]\)) follows

\[
\sum_{i=0}^{m} \sum_{j=0}^{n} \binom{m}{i} \binom{n}{j} B(i, j, h) = \sum_{r=0}^{h} \frac{s(h, r)}{h!} (mn)^r = \binom{mn}{h}
\]

Note that this type of product formula for a polynomial sequence \((p_n(x))_{n \geq 0}\), say, is achieved by straightforward basis transformation \(p_n(x) \mapsto x^n \) and its inverse, \(x^m \mapsto p_n(x) \), in the vector space of polynomials. Such a product formula will surface whenever an inverse pair of transformations is explicitly known.
We also check our formula for $B(u, v, h)$ by calculating the cardinality of Λ_n^k according to (8), using the identity $\delta_{i, k} = \sum_{h=1}^{k} S(k, h) s(h, i)$ ([15, 1.4.1])

$$|\Lambda_n^k| = \sum_{h=1}^{k} S(k, h) \sum_{v=1}^{k} \sum_{u=1}^{k} \left(\frac{n}{v+u-1}\right) u!v! \sum_{i=0}^{h} s(h, i) S(i, u) S(i, v)$$

$$= \sum_{v=1}^{k} \sum_{u=1}^{k} \left(\frac{n}{v+u-1}\right) u!v! S(k, u) S(k, v)$$

$$= \sum_{p=1}^{2k-1} \sum_{s=1}^{k} \left(\frac{n}{p}\right) s! (p+1-s)! S(k, s) S(k, p+1-s)$$

in agreement with (4).

5 The Polynomials

We saw in (4) that the numbers $|\Lambda_n^k|$ can be extended from their support to polynomials $\lambda_{2k-1}(x)$, say, in $x \in \mathbb{R}$ of degree $2k-1$,

$$\lambda_{2k-1}(x) = \sum_{m=1}^{2k-1} \left(\frac{x}{m}\right) \sum_{p=1}^{k} p! S(k, p) (p+1-p)! S(k, m+1-p)$$

By (1) $\lambda_{2k-1}(n) = \sum_{p=0}^{n} (p^k - p^{k-1}) \left((n+1-p)^k - (n+1-p)^{k-1}\right)$ for all positive integers n. We want to have a closer look at this aspect of the polynomials.

Lemma 7 The functions $\beta_{2k+1}(n) := \sum_{j=1}^{n} j^k (n-j)^k$, $n, k \in \mathbb{N}_0$, can be extended to polynomials $\beta_{2k+1} \in \mathbb{R}[x]$ of degree $2k+1$,

$$\beta_{2k+1}(x) = \frac{x^{2k+1}k!}{(2k+1)!} + (-1)^k \sum_{j=0}^{(k-1)/2} \frac{B_{2k-j}}{k-j} \left(\frac{k}{2j+1}\right) x^{2j+1}$$

where $B(n) = \sum_{j=0}^{n} \sum_{i=0}^{j} \frac{(-1)^i}{j+1} (\frac{j}{i}) i^n$ is the n-th Bernoulli number.

Proof. The functions $f_{k+1}(n) := \sum_{j=1}^{n} j^k$ can be extended to polynomials $f \in \mathbb{R}[x]$ of degree $k+1$ because $\nabla f_{k+1}(n) = f_{k+1}(n) - f_{k+1}(n-1) = n^k$ for all $n \in \mathbb{N}_1$ can be extended to the polynomial x^k. It is well known [2, § 83] that

$$f_{k+1}(n) = \sum_{j=0}^{k} \binom{k+1}{j} B_j \frac{(n+1)^{k+1-j}}{k+1}$$
Hence $\beta_{2k+1}(n+1)$

\[
\begin{align*}
&= \sum_{j=0}^{n} j^k (n+1-j)^k = \sum_{i=0}^{k} \binom{k}{i} (-1)^{k-i} (n+1)^i \sum_{j=1}^{n} j^{2k-i} \\
&= \sum_{i=0}^{k} \binom{k}{i} (-1)^{k-i} (n+1)^i \sum_{j=0}^{2k-i} \binom{2k-i}{j} \frac{B_j (n+1)^{2k-i+1-j}}{2k-i+1} \\
&= \sum_{j=0}^{2k} B_j (n+1)^{2k+1-j} \sum_{i=0}^{2k-j} \binom{k}{i} \binom{2k-i+1}{j} \frac{(-1)^{k-i}}{2k-i+1}.
\end{align*}
\]

Note that for $j = 0$ we obtain the term $B_0 (n+1)^{2k+1} \sum_{i=0}^{k} \binom{k}{i} (-1)^{k-i}$, where

\[
\sum_{i=0}^{k} \binom{k}{i} \frac{(-1)^{k-i}}{2k-i+1} = \sum_{i=0}^{\infty} \binom{k}{i} \frac{(-1)^{i} x^{k+1+i}}{k+1+i} \bigg|_{x=1} = \int_0^1 x^k (1-x)^k \, dx = \text{Beta}(k, k) = \frac{k! k!}{(2k+1)!}.
\]

hence $\beta_{2k+1}(n+1)$

\[
\begin{align*}
&= \frac{(n+1)^{2k+1} k! k!}{(2k+1)!} + \sum_{j=1}^{2k} B_j (n+1)^{2k+1-j} \sum_{i=0}^{2k-j} \binom{k}{i} \binom{2k-i+1}{j} \frac{(-1)^{k-i}}{2k-i+1}.
\end{align*}
\]

For $j > 0$ holds

\[
\begin{align*}
&= \sum_{i=0}^{2k-j} \binom{k}{i} \binom{2k-i+1}{j} \frac{(-1)^{k-i}}{2k-i+1} \\
&= \frac{1}{j} \sum_{i=0}^{2k-j} \binom{k}{i} \left(\binom{2k-i+1}{j} - \binom{2k-i}{j} \right) (-1)^{k-i} \\
&= \frac{(-1)^{k-j-1}}{j} \left(\binom{k-j}{2k+1-j} - \binom{k}{2k-j+1} \right).
\end{align*}
\]

Hence $\beta_{2k+1}(x)$

\[
\begin{align*}
&= \frac{x^{2k+1} k! k!}{(2k+1)!} + \sum_{j=1}^{2k} B_j x^{2k+1-j} \frac{(-1)^{k-j-1}}{j} \left(\binom{k-j}{2k+1-j} - \binom{k}{2k+1-j} \right) \\
&= \frac{x^{2k+1} k! k!}{(2k+1)!} + \sum_{j=1}^{k} B_{2k+1-j} x^j \frac{(-1)^{k-j}}{2k+1-j} \left(\binom{k}{j} (-1)^j - \binom{k}{j} \right)
\end{align*}
\]
Starting at $j = 3$, the Bernoulli numbers B_j are 0 for odd j. Therefore, $\beta_{2k+1} (x)$

$$
= x^{2k+1}k!k!\frac{(k-1)!}{(2k+1)!} + \frac{1}{2} \sum_{j=0}^{k-1} B_{2(k-j)}x^{2j+1} \frac{(-1)^{k+1}}{2(k-j)} \left(\frac{2j-k}{2j+1} - \frac{k}{2j+1} \right)
$$

$$
= x^{2k+1}k!k!\frac{(k-1)!}{(2k+1)!} + (-1)^{k+1} \sum_{j=0}^{k} \frac{B_{2(k-j)}}{k-j} \frac{k}{2j+1} x^{2j+1}.
$$

We call the polynomials $\beta_{2k+1} (x)$ beta polynomials, because

$$
\lim_{n \to \infty} \beta_{2k+1} (n) n^{-2k-1} = \frac{k!k!}{(2k+1)!}.
$$

Lemma 7 allows us to improve on this result.

Corollary 8 If k is odd, then $\beta_{2k+1} (x) / x^k = x^{k+1}k!k!\frac{(k-1)!}{(2k+1)!} - \frac{2B_{k+1}}{k+1} + o(x^k)$. If k is even, then $\beta_{2k+1} (x) / x^{k-1} = x^{k+2}k!k!\frac{(k-1)!}{(2k+1)!} + \frac{2kB_{k+2}}{k+2} + o(x^{k-1})$.

The second order backwards difference connects the beta polynomials to the polynomials $\lambda_{2k-1} (x)$, because

$$
\nabla^2 \beta_{2k+1} (n + 1) = \beta_{2k+1} (n + 1) - 2\beta_{2k+1} (n) + \beta_{2k+1} (n - 1)
$$

$$
= \sum_{s=0}^{n} (s^k - s^{k-1}) \left((n + 1 - s)^k - (n + 1 - s)^{k-1} \right)
$$

$$
= \lambda_{2k-1} (n)
$$

for all positive integers n, and hence

$$
\nabla^2 \beta_{2k+1} (x + 1) = \lambda_{2k-1} (x)
$$

for all $x \in \mathbb{R}$. Therefore we obtain the following asymptotics for $|\Lambda_n^k|$.

Corollary 9 For odd k

$$
|\Lambda_n^k| \approx \frac{((n+1)^{2k+1}-2n^{2k+1}+(n-1)^{2k+1})k!k!}{(2k+1)!} - \frac{2((n+1)^{k+1}-2n^{k+1}+(n-1)^{k+1})B_{k+1}}{k+1}.
$$

For even k,

$$
|\Lambda_n^k| \approx \frac{((n+1)^{2k+1}-2n^{2k+1}+(n-1)^{2k+1})k!k!}{(2k+1)!} + \frac{2k((n+1)^{k+1}-2n^{k+1}+(n-1)^{k+1})B_{k+2}}{k+2}.
$$

The number of nonintersecting k-tuples of intervals is approximately

$$
\binom{n+1}{2} k - \frac{((n+1)^{2k+1}-2n^{2k+1}+(n-1)^{2k+1})k!k!}{(2k+1)!} + \frac{2((n+1)^{k+1}-n^{k+1})B_{k+1}}{k+1}
$$

for odd k, and

$$
\binom{n+1}{2} k - \frac{((n+1)^{2k+1}-2n^{2k+1}+(n-1)^{2k+1})k!k!}{(2k+1)!} - \frac{2((n+1)^{k+1}-n^{k+1})B_{k+2}}{k+2}
$$

for even k.

Proof. If k is odd, then $\beta_{2k+1} (x) \approx x^{2k+1}k!k!\frac{(k-1)!}{(2k+1)!} - \frac{2x^kB_{k+1}}{k+1}$ according to the previous Corollary, hence

$$
|\Lambda_n^k| = \lambda_{2k-1} (n) \approx
$$
(n+1)^{2k+1} k! k! - 2(n+1)^k B_{k+1} - 2 \left(\frac{n^{2k+1} k! k!}{(2k+1)!} \right) - \frac{2n^k B_{k+1}}{k+1} - \frac{(n-1)^{2k+1} k! k!}{(2k+1)!} - \frac{2(n-1)^k B_{k+1}}{k+1} \right)

Recall that the number of k-tuples of subintervals from $[1, n]$ intersecting in $l \geq 1$ points equals the number of k-tuples chosen from $[1, n+1-l]$ intersecting in 1 point. Hence the number of nonintersecting k-tuples equals \(\binom{n+1}{2}^k - \sum_{l=1}^{n} |\Lambda_{n}^k| \)

\[
\begin{align*}
\binom{n+1}{2} - \sum_{s=1}^{n} s^k (n+1-s)^k + \sum_{s=1}^{n} (s-1)^k (n+1-s)^k \\
\binom{n+1}{2} - \beta_{2k+1} (n+1) + \beta_{2k+1} (n) \\
\approx \binom{n+1}{2} + \frac{(n^{2k+1} - (n+1)^{2k+1}) k! k!}{(2k+1)!} - \frac{2(n^k - (n+1)^k) B_{k+1}}{k+1}
\end{align*}
\]

For even k the result follows in the same way.

It is no surprise that the above approximation to $|\Lambda_{n}^k|$ works well, even for small n. The following small table shows some relative approximation errors $(|\Lambda_{n}^k| - \text{approximation}) / |\Lambda_{n}^k|$ for $k = 5, 6$, and n between 3 and 6.

\[
\begin{array}{cccccc}
\text{n} & \text{k=5} & \text{k=6} \\
3 & -2.2 \cdot 10^{-3} & -9.7 \cdot 10^{-3} \\
4 & -5.8 \cdot 10^{-4} & 8.0 \cdot 10^{-5} \\
5 & -1.8 \cdot 10^{-4} & -1.0 \cdot 10^{-5} \\
6 & -6.8 \cdot 10^{-5} & 1.8 \cdot 10^{-6} \\
\end{array}
\]

5.1 Expansion in Odd Degrees

The beta polynomials are sums of odd powers, and therefore $\lambda_{2k-1}(x) = \nabla^2 \beta_{2k+1}(x+1)$ is a polynomial that contains only odd powers of x. The experimental results we mentioned in the introduction let us conjecture that $|\Lambda_{n}^k|$ can be expanded in terms of binomial coefficients of odd degrees,

\[
|\Lambda_{n}^k| = \sum_{j=1}^{k} \binom{n+j-1}{2j-1} d(j, k)
\]

for some positive integers $d(j, k)$. We will now determine those coefficients in terms of the numbers $c(m, k)$ we discussed earlier (see (??)). First we need one more property of $c(m, k)$.

Lemma 10 For all positive integers m holds

\[
c(m, k) = \sum_{i=m}^{2k-1} (-1)^{i-1} c(i, k) \binom{i-1}{m-1}
\]
Proof. We noted that the polynomials \(\lambda_{2k-1}(x) \) are odd, \(\lambda_{2k-1}(x) = -\lambda_{2k-1}(-x) \). By expansion (4) \(\lambda_{2k-1}(n) \)

\[
\begin{align*}
&= \sum_{m=1}^{2k-1} \binom{n}{m} c(m, k) = -\lambda_{2k-1}(-n) = -\sum_{m=1}^{2k-1} \left(\frac{-n}{m} \right) c(m, k) \\
&= \sum_{i=1}^{2k-1} (-1)^{i-1} c(i, k) \binom{n + i - 1}{i} \\
&= \sum_{i=1}^{2k-1} (-1)^{i-1} c(i, k) \sum_{m=1}^{2k-1} \binom{n}{m} \binom{i - 1}{i - m} \\
&= \sum_{m=1}^{2k-1} \binom{n}{m} \sum_{i=m}^{2k-1} (-1)^{i-1} c(i, k) \binom{i - 1}{m - i}
\end{align*}
\]

Comparing coefficients of the polynomial basis \(\binom{n}{m} \) shows that

\[
c(m, k) = \sum_{i=m}^{2k-1} (-1)^{i-1} c(i, k) \binom{i - 1}{m - 1}.
\]

Lemma 11 Let \(d(j, k) := \sum_{i=1}^{2k-1} (-1)^{i-1} \frac{j-i}{j-i-1} c(i, k) \) for all \(j = 1, \ldots, k \). Then

\[
|\Lambda_n^k| = \sum_{j=1}^{k} \binom{n + j - 1}{2j - 1} d(j, k)
\]

Note that \(\frac{i-j}{i-j-1} \) must be interpreted as 1 if \(j = 1 \), and as \(\frac{i-j-1}{j-1} \) if \(i = j > 1 \).

Proof. Because of

\[
\begin{align*}
\sum_{j \geq 1} \binom{n + j - 1}{2j - 1} d(j, k) &= \sum_{j \geq 1} \sum_{m=0}^{2j-1} \binom{n}{m} \binom{j-1}{2j-1-m} d(j, k) \\
&= \sum_{m=0}^{2k-1} \binom{n}{m} \sum_{j=1}^{m} \binom{j-1}{m-j} d(j, k)
\end{align*}
\]

and \(|\Lambda_n^k| = \sum_{m=1}^{2k-1} \binom{n}{m} c(m, k) \) it suffices to show that

\[
c(m, k) = \sum_{j=1}^{m} \binom{j-1}{m-j} d(j, k) \\
= \sum_{j=1}^{m} \binom{j-1}{m-j} \sum_{i=1}^{2k-1} (-1)^{i-1} \frac{i-1}{i-j} \binom{i-j}{j-1} c(i, k)
\]
Combine the identity $\sum_{j=1}^{m} \frac{j-1}{m-j} = \binom{i-1}{m-1}$ and the previous Lemma to get
\[
c(m, k) = \sum_{i=1}^{2k-1} (-1)^{i-1} c(i, k) \sum_{j=1}^{m} \frac{j-1}{m-j} \binom{i-j}{j-1} = \sum_{j=1}^{m} \frac{j-1}{m-j} \sum_{i=1}^{k} (-1)^{i-1} \binom{i-j}{j-1} c(i, k)
\]
as desired. □

6 Distribution of the Size of the Intersection

If we consider the cardinality of the intersection of a sequence of k random (equally likely) subintervals of $[1, n]$ as a random variable L_n, say, then
\[
\Pr(L_n = l) = \Pr(L_{n+1-l} = 1) = \left| \Lambda_{n+1-l} \right| \binom{n+1}{2}^{-k}
\]
for all positive integers l. For the graph below we applied Corollary 9, plotting a continuous approximation to this distribution ($n = 100$ and $k = 5$). In that example, $\Pr(L_n = 0) = 0.876$.

Pr $(L_{100} = l)$ for $1 \leq l \leq 50$ and $k = 5$ (continuous approximation)

The probability of no intersection will increase with the number k of intervals; by 2 and Corollary 9
\[
\Pr(L_n = 0) = 1 - \left(\frac{n+1}{2} \right)^{-k} \sum_{p=1}^{n} \left(p^k - (p-1)^k \right) (n+1-p)^k \\
\approx 1 - 2^k \frac{(n+1)^{2k+1} - n^{2k+1}}{(2k+1)!n^k (n+1)^k} \approx 1 - \frac{k!k!}{(2k)!} \\
\approx 1 - 2^k \frac{k^{2k+1} \sqrt{2\pi}}{(2k)^{2k+1/2}} \approx 1 - 2^{-k} \sqrt{k\pi}
\]
(10)
The probability of selecting k nonintersecting intervals

6.1 The First Two Moments

Calculating the expected value $\mu_{k,n}$ of L_n is a straightforward exercise; finding the variance $\sigma^2_{k,n}$ may be easier via the second (falling) factorial moment (Lemma 13).

Lemma 12 The expected size $\mu_{k,n}$ of the intersection of a k-tupel of subintervals of $[1, n]$ equals

$$\left(\frac{n + 1}{2} \right)^{-k} \sum_{i=1}^{n} i^k (n + 1 - i)^k.$$

Furthermore, $\lim_{n \to \infty} \mu_{k,n} \approx \frac{2^{k+1} n^{k+1} k!}{n^{k+1} 2^{k} (2k+1)!}$

$$\approx (n + 1)^{k+1} n^{-k} 2^{-k-1} \sqrt{\pi / k}.$$

With the help of Stirling’s formula we can further approximate $\mu_{k,n}$ by $(n + 1)^{k+1} n^{-k} 2^{-k-1} \sqrt{\pi / k}$. There is however a significant loss in precision from the first to the second approximation. For example, if $k = n = 50$, the relative error $(\mu_{k,n} - (n + 1)^{k+1} n^{-k} 2^{-k-1} \sqrt{\pi / k}) / \mu_{k,n}$ equals -2×10^{-32}, and $(\mu_{k,n} - (n + 1)^{k+1} n^{-k} 2^{-k-1} \sqrt{\pi / k}) / \mu_{k,n} = -7 \times 10^{-3}$. In any case, we observe a slow increase of the expected cardinality of the intersection when n increases, and an exponential decline, when k increases.

Proof. From $\Pr (L_n = l) = \Pr (L_{n+1-l} = 1) = |\Lambda_{n+1-l}^k (\begin{array}{c} n+1 \end{array})^{-k} |$ for all positive integers l follows $\mu_{k,n} = \left(\frac{n + 1}{2} \right)^{-k} \sum_{l=1}^{n} |\Lambda_{n+1-l}^k |$. In terms of beta polynomials we must show that

$$\beta_{2k+1} (n+1) = \sum_{l=1}^{n} l \nabla^2 \beta_{2k+1} (n + 2 - l)$$

(11)
(see (9)). This holds for \(n = 1 \) because \(\nabla^2 \beta_{2k+1} (2) = |A_k| = 1 = 1^k (2-1)^k = \beta_{2k+1} (2) \).

Note that for \(k > 0 \) the beta polynomials have roots at \(n = 0 \) and \(n = 1 \). By induction

\[
\sum_{l=1}^{n+1} l \nabla^2 \beta_{2k+1} (n + 2 - l)
= \sum_{l=0}^{n} (l + 1) \nabla^2 \beta_{2k+1} (n + 1 - l) = \beta_{2k+1} (n) + \nabla^2 \sum_{l=0}^{n-1} \beta_{2k+1} (n + 1 - l)
= \beta_{2k+1} (n) + \nabla (\beta_{2k+1} (n + 1) - \beta_{2k+1} (1))
= \beta_{2k+1} (n) + \beta_{2k+1} (n + 1) - \beta_{2k+1} (n)
\]

We saw in Lemma 7 that \(\beta_{2k+1} (n + 1) \approx \frac{(n+1)^k}{k! (2k+1)!} \), explaining the approximation \(\frac{2^k (n+1)^{k+1} k l k!}{n^{k+1} (2k+1)!} \)
for \(\mu_{k,n} \).

Lemma 13

\[
E [L_n (L_n - 1)] = 2 \left(\begin{array}{c} n+1 \\ 2 \end{array} \right)^{-k} \sum_{i=1}^{n} \sum_{j=1}^{n-i} (ij)^k
\]

Proof. Note that \(L_1 \equiv 1 \), thus the Lemma holds for \(n = 1 \), because \(0 = E [L_1 (L_1 - 1)] = 2^{(2)} \left(\begin{array}{c} n+1 \\ 2 \end{array} \right)^{-k} \sum_{i=1}^{1} \sum_{j=1}^{1-i} (ij)^k \). Suppose it holds for \(n \geq 1 \). By induction,

\[
\left(\begin{array}{c} n+2 \\ 2 \end{array} \right)^{-k} E [L_{n+1} (L_{n+1} - 1)]
= \sum_{l=1}^{n+1} l (l - 1) |A_{n+2-l}^k| = \sum_{l=1}^{n} (l - 1) l |A_{n+1-l}^k| + \sum_{l=1}^{n} 2l |A_{n+1-l}^k|
= \left(\begin{array}{c} n+1 \\ 2 \end{array} \right)^{k} E [L_n (L_n - 1)] + 2 \beta_{2k+1} (n + 1)
= 2 \sum_{i=0}^{n} i^k \sum_{j=i}^{n} (j-i)^k + 2 \sum_{i=0}^{n+1} i^k (n+1-i)^k = 2 \sum_{i=0}^{n+1} i^k \sum_{j=i}^{n+1} (j-i)^k
\]

\[
= \left(\begin{array}{c} n+2 \\ 2 \end{array} \right)^{-k} \left(2 \sum_{i=1}^{n} \sum_{j=1}^{n-i} (ij)^k - \beta_{2k+1} (n + 1) (\beta_{2k+1} (n + 1) - 1) \right).
\]

References

