§20. CONTRADICTION AND CONTRAPOSITIVE

We address, once again, the question of how to prove a mathematical statement of the form “if A, then B”.

We have used so far the template for a direct proof: unravel A, unravel B, produce the link from A to B. So, in a direct proof, no negation is involved.

We will introduce now two more ways to prove “if A, then B”, called Contrapositive and Contradiction. They are actually two versions of a similar approach, and we will underscore their differences at the end of this discussion.

ADVICE. Since we will need to negate sentences, it is important to review sections 7 and 11 before proceeding.
CONTRAPOSITIVE. It is a simple verification (and a good way to review Truth Tables) that $x \rightarrow y$ and $\neg y \rightarrow \neg x$ have the same truth tables, and so they are equivalent Boolean expressions.

Therefore, to prove “if A, then B” we can equivalently prove “if NOT B, then NOT A”. Thus, the scheme (or “template”) to prove a statement “if A, then B” by contrapositive boils down to:

Unravel NOT B

Unravel NOT A

Produce the link from NOT B to NOT A.

REMARK. Proofs by contrapositive and by contradiction are particular useful when trying to show that some set is empty. As a simple illustration we have.

J. Viola-Prioli
Prove that if \(A \cap C \subseteq B \), then \((C - B) \cap A = \emptyset \).

Proof. Let us state (and prove) the contrapositive, that is, if \((C - B) \cap A \neq \emptyset \), then \(A \cap C \) is not contained in \(B \).

Unravel the hypothesis: \((C - B) \cap A \neq \emptyset \) means there is an element \(x \) in \((C - B) \cap A \). Therefore \(x \in C \), \(x \notin B \) and \(x \in A \). (#)

Unravel the conclusion: \(A \cap C \) is not contained in \(B \) means we must exhibit an element of \(A \cap C \) that is not an element of \(B \). (##)

Link: From (#) we have that \(x \in C \) and \(x \in A \), so \(x \in A \cap C \). At the same time, by (#) \(x \notin B \). Hence this element \(x \) satisfies our requirement in (##).

The proof is complete.

A proof by Contradiction is the other indirect technique to be considered.

Recall that in trying to prove “if \(A \), then \(B \)” we can never assume the conclusion \(B \) to be true. However, the truth table of \(A \rightarrow B \) shows that the only possibility for the end result to be false, is that \(A \) be true and \(B \) be false.

\[J. \text{Viola-Prioli} \]
CONTRADICTION. The template to prove by contradiction “if A, then B” is as follows:
Assume A to be true, B to be false and try to arrive to something impossible, that is, to a contradiction.

NOTE.

a) A contradiction might be a violation of a principle, a violation of A (which was assumed to be true), a violation of a result previously shown, etc.
b) Once we arrive to a contradiction, we have shown that the negation of “if A, then B” is false, and so the statement “if A, then B” is true.

Usually, a proof by contradiction begins with the sentence “Assume, for sake of a contradiction, that....”

ILLUSTRATIONS.

J. Viola-Prioli
1) Prove that no integer is simultaneously even and odd.

Proof. This is rephrased as “if \(x \in \mathbb{Z} \), then \(x \) can not be both even and odd”.

Notice that this is \(A \Rightarrow B \), where
\[
A: x \in \mathbb{Z} \\
B: x \text{ can not be both even and odd.}
\]

Assume for sake of a contradiction that \(A \) is true and \(B \) is false.
Hence \(x \) is an integer that can be written simultaneously as \(x = 2k \) (some integer \(k \)) and \(x = 2w + 1 \) (some integer \(w \)).

Therefore, \(2k = 2w + 1 \), and so \(2(k-w) = 1 \), which gives that \(k-w \) is \(\frac{1}{2} \). This is a contradiction, since \(k-w \) is an integer, and \(\frac{1}{2} \) is not.

Having arrived to a contradiction, we have proved that the original statement is true.
2) Prove by contradiction that if 4 divides $a^2 + b^2$, then a and b are even.

Proof. This is $A \implies B$ where

A: 4 divides $a^2 + b^2$

B: a is even and b is even

Assume for sake of a contradiction that A is true and B is false.

A true means that $a^2 + b^2 = 4k$, for some integer k.

We negate B, so a is odd or b is odd. Let us consider, for instance, that a is odd. Then a^2 is odd.

Since $a^2 + b^2 = 4k$, we have $b^2 = a^2 + b^2 - a^2 = 4k - a^2$, so b must be odd also (because “even – odd is odd”). Thus, b must be odd.

Therefore we have $a = 2t+1$, and $b = 2w+1$, with t and w integers. So,

$4k = a^2 + b^2 = (2t+1)^2 + (2w+1)^2 = 4t^2 + 4t + 1 + 4w^2 + 4w + 1 = 4(t^2 + t + w^2 + w) + 2 = 4y + 2$, if we set $y = t^2 + t + w^2 + w$.
Therefore, $4k = 4y + 2$, with y an integer, and so $2k = 2y+1$. Solving for 1, we arrive to $1 = 2t$, so $\frac{1}{2}$ is an integer. This is a contradiction.

3) **Prove that if** a, b and $a + b$ are prime, then $a = 2$ **or** $b = 2$.

Proof. Assume for sake of a contradiction that the hypothesis holds but the conclusion is false. Thus neither a nor b equals 2.

Being prime numbers (according to the hypothesis) and different from 2, they must be odd and greater than or equal to 3. Thus, $a + b \geq 6$.

Since a and b are odd, $a + b$ is even. But by hypothesis $a + b$ is prime, so we arrive to the following: $a + b$ is prime, $a + b \geq 6$, and $a + b$ is even.

This is a contradiction because the only even prime is 2.

How do these two methods compare? Observe that in a contrapositive we have only one starting point (NOT B) and must arrive to NOT A. That is done through a link. *Hence, not much information, but a clear goal.*
On the other hand, in a proof by contradiction we have more information: A and NOT B, which means an edge over the contrapositive. However, we must arrive to a contradiction, but a priori we ignore which contradiction we will end up with. *Hence, more information, but the goal is somehow undefined.*

CAUTION. Do not confuse “prove by contradiction” with “find a counterexample”.

DISCUSSION PROBLEM. Suppose we paint each point of the xy-plane by using one of either three given colors, Blue, Red and Yellow. Prove that given any positive real number d there exist two points of the same color exactly d units apart. **Note:** we have already treated the case of only two colors.