Tutte Polynomials

Let \(G \) be a connected graph with vertex set \(V(G) \) and edge set \(E(G) \). Let \(n = |V(G)| \) and \(m = |E(G)| \). Let \(F = \{e_1, e_2, \ldots, e_m\} \) be a linear ordering of \(E(G) \). There are \(m! \) choices for \(F \).

Now, let \(T \) be a spanning tree of \(G \). For each edge \(e_j \in F \), there are two possibilities: either \(e_j \in E(T) \) or \(e_j \not\in E(T) \).

If \(e_j \in E(T) \), then \(T - e_j \) has exactly two components, \(A \) and \(B \), each of which contains one endvertex of \(e_j \). Let \([A,B]\) denote the set of edges with one end in \(A \) and the other in \(B \). If \([A,B] \cap \{e_1, e_2, \ldots, e_{j-1}\} = \emptyset \), we say that \(e_j \) is internally-active with respect to \(T \).

If \(e_j \not\in E(T) \), then \(T \cup \{e_j\} \) has a unique fundamental cycle \(C \). If \(E(C) \cap \{e_1, e_2, \ldots, e_{j-1}\} = \emptyset \), we say that \(e_j \) is externally-active with respect to \(T \).

Let \(\text{in}(T,G) \) denote the number of internally-active edges of \(G \) with respect to \(T \), and let \(\text{ex}(T,G) \) denote the number of externally-active edges of \(G \) with respect to \(T \).

We now define the polynomial
\[
D_F(G;x,y) = \sum_T x^{\text{in}(T,G)}y^{\text{ex}(T,G)},
\]
where the sum is over all spanning trees \(T \) of \(G \). Obviously, \(D_F(G;1,1) = \tau(G) \), the number of spanning trees of \(G \). What might not be so obvious is that \(D_F(G;x,y) \) does not depend on the ordering \(F \) that was chosen.

We need to prove this, of course.

As with the lecture on Chromatic Polynomials, \(G - e \) is the graph obtained from \(G \) by deleting edge \(e \) deleted and \(G_e \) is the graph obtained from \(G \) by contracting the edge \(e \). For our use here, we will keep multiple copies of edges if they appear. For example, if \(G = K_3 \) and \(e \) is any edge of \(G \), then \(G_e \) will be a digon.

An edge \(e \) is a loop if \(e \) is the only edge in a cycle of length one. An edge \(e \) is a coloop if \(G - e \) has a larger number of connected components than \(G \) has. That is, \(e \) is in every spanning forest of \(G \). The interested reader might note that the term “coloop” is frequently a sign that one could rewrite things in the terminology of matroids. Spanning forests are bases, cycles correspond to circuits, etc.

The ordering \(F \) induces an ordering \(F' \) on the edge set of \(G - e \) or \(G_e \) in the obvious way. For ease in our argument, we will choose \(e = e_m \), in the following three cases.

Special case 1. Suppose that edge \(e \) is a coloop of \(G \). Then, \(e \) is internally active in any spanning tree \(T \) of \(G \). Also, \(T_e \) is a spanning tree of \(G_e \), and every spanning tree of \(G_e \) is \(T_e \) for some spanning tree \(T \) of \(G \). Note that \(\text{in}(T,G) = 1 + \text{in}(T_e,G_e) \) and, since \(e \) is in no fundamental cycle of \(G_e \), \(\text{ex}(T,G) = \text{ex}(T_e,G_e) \).

Hence,
\[
D_F(G;x,y) = xD_{F'}(G_e;x,y).
\]
Special case 2. Suppose that edge e is a loop of G. Then, e is externally-active in any spanning tree T of G. Any spanning tree of G is a spanning tree of $G - e$. Since e is in exactly one fundamental cycle of T, and this cycle is not in $G - e$, $ex(T, G) = 1 + ex(T, G - e)$. Also, the edge $e \not\in [A, B]$ for any partition of the vertex set of G, and hence $in(T, G) = in(T, G - e)$. Thus,

$$DF(G; x, y) = yDF(G - e; x, y).$$

Case 3. Suppose that edge e is neither a loop nor a coloop. Then, e is in some of the spanning trees of G and e is not in some of the spanning trees of G. Let T be a spanning tree of G.

If $e \in E(T)$, then e is not internally active with respect to T. Here, T_e is a spanning tree of G_e,

$$in(T, G) = in(T_e, G_e) \text{ and } ex(T, G) = ex(T_e, G_e).$$

If $e \not\in E(T)$, then e is not externally-active with respect to T. Now, T is a spanning tree of $G - e$,

$$in(T, G) = in(T, G - e) \text{ and } ex(T, G) = ex(T, G - e).$$

Therefore,

$$DF(G; x, y) = DF(G_e; x, y) + DF(G - e; x, y).$$

Combining these three cases, we have, for $e = e_m$,

$$DF(G; x, y) = \begin{cases}
xD_F(G_e; x, y) & \text{if } e \text{ is a coloop}, \\
yDF(G - e; x, y) & \text{if } e \text{ is a loop}, \\
DF(G_e; x, y) + DF(G - e; x, y) & \text{if } e \text{ is neither a loop nor a coloop}.
\end{cases}$$

The reader should note that this recurrence appears to be sensitive to the ordering F. Our goal will be to show that it is not.

Perhaps the simplest way to see that the order F is not important is to compare the above recursion with the recursion for Whitney’s rank polynomial,

$$R(G; x, y) = \sum_{S \subseteq E(G)} x^{\omega(G; S) - \omega(G)} y^{v(G; S) - \omega(G; S) + \omega(G; S)} = \sum_{S \subseteq E(G)} x^{\rho(G) - \rho(G; S)} y^{v(G; S) - \omega(G; S) + \omega(G; S)},$$

where $G : S$ is the graph with vertex set $V(G)$ and edges set S, $\omega(H)$ is the number of connected components of H, $v(H)$ is the number of vertices of H, and $\epsilon(H)$ is the number of edges of H. This polynomial is actually a slight variant of the original rank polynomial, which would be $x^{\rho(G)} R(G; x^{-1}, y)$.

The quantity $\rho(H) = v(H) - \omega(H)$ is the rank of H, and is the rank of the $v(H) \times \varepsilon(H)$ incidence matrix M of H (using a column of zeroes for any loop). The cycle space of H is the space $Z(H) = \{ \mathbf{x} : h^T \mathbf{x} = 0 \}$, and we let $\gamma(H) = \dim Z(H) = \varepsilon(H) - v(H) + \omega(H)$. Normally, we use the field of two elements, but in general, $Z_K(H)$ might be used to designate the cycle space of H over the field (or ring) K. (Some don’t like to use the word “space” with the word “ring”, but I don’t mind misusing the terminology slightly.)
Let us examine the three cases we used in the Tutte recursion. Let $\rho(H) = $

If e is a coloop, and $e \in S \subseteq E(G)$, then $v(G : S - e) = v(G : S)$, $\omega(G : S - e) = \omega(G : S) + 1$, $\varepsilon(G : S - e) = \varepsilon(G : S) - 1$, $\rho(G : S - e) = \rho(G : S) - 1$, and $\gamma(G : S - e) = \gamma(G : S)$. Hence,

$$ R(G; x, y) = \sum_{S \subseteq E(G)} \chi^{\rho(G) - \rho(G:S)} y^{|G:S|} $$

$$ = \sum_{S \subseteq E(G)} \chi^{\rho(G) - \rho(G:S)} y^{|G:S|} + \sum_{e \in S \subseteq E(G)} \chi^{\rho(G) - \rho(G:S)} y^{|G:S|} $$

$$ = R(G - e; x, y) + x \sum_{e \in S \subseteq E(G)} \chi^{\rho(G) - \rho(G:S)} y^{|G:S|} $$

$$ = R(G - e; x, y) + x \sum_{e \in S \subseteq E(G)} \chi^{\rho(G) - \rho(G:S)} y^{|G:S|} $$

$$ = (1 + x)R(G - e; x, y). $$

If e is a loop, and $e \in S \subseteq E(G)$, then $v((G : S)_e) = v(G : S)$, $\omega((G : S)_e) = \omega(G : S)$, $\varepsilon((G : S)_e) = \varepsilon(G : S) - 1$, $\rho((G : S)_e) = \rho(G : S) - 1$, $\rho(G_e) = \rho(G)$, and $\gamma((G : S)_e) = \gamma(G : S) - 1$. Hence,

$$ R(G; x, y) = \sum_{S \subseteq E(G)} \chi^{\rho(G) - \rho(G:S)} y^{|G:S|} $$

$$ = \sum_{S \subseteq E(G)} \chi^{\rho(G) - \rho(G:S)} y^{|G:S|} + \sum_{e \in S \subseteq E(G)} \chi^{\rho(G) - \rho(G:S)} y^{|G:S|} $$

$$ = R(G - e; x, y) + y \sum_{e \in S \subseteq E(G)} \chi^{\rho(G) - \rho(G:S)} y^{|G:S|} $$

$$ = R(G - e; x, y) + y \sum_{e \in S \subseteq E(G)} \chi^{\rho(G) - \rho(G:S)} y^{|G:S|} $$

$$ = (1 + y)R(G_e; x, y). $$

Finally, suppose that e is neither a loop nor a coloop. If $e \in S \subseteq E(G)$, then $v((G : S)_e) = v(G : S) - 1$, $\omega((G : S)_e) = \omega(G : S)$, $\varepsilon((G : S)_e) = \varepsilon(G : S) - 1$, $\rho((G : S)_e) = \rho(G : S) - 1$, $\rho(G_e) = \rho(G) - 1$, and $\gamma((G : S)_e) = \gamma(G : S)$. Thus,

$$ R(G; x, y) = \sum_{S \subseteq E(G)} \chi^{\rho(G) - \rho(G:S)} y^{|G:S|} $$

$$ = \sum_{S \subseteq E(G)} \chi^{\rho(G) - \rho(G:S)} y^{|G:S|} + \sum_{e \in S \subseteq E(G)} \chi^{\rho(G) - \rho(G:S)} y^{|G:S|} $$

$$ = R(G - e; x, y) + \sum_{e \in S \subseteq E(G)} \chi^{\rho(G_e) - \rho((G:S)_e)} y^{|G:S|} $$

$$ = R(G - e; x, y) + R(G_e; x, y). $$
Combining these three results, we have

\[
R(G; x, y) = \begin{cases}
(1 + x)R(G_e; x, y) & \text{if } e \text{ is a coloop}, \\
(1 + y)R(G - e; x, y) & \text{if } e \text{ is a loop}, \\
R(G_e; x, y) + R(G - e; x, y) & \text{if } e \text{ is neither a loop nor a coloop}.
\end{cases}
\]

We calculate

\[
R(K_1; x, y) = \sum_{S \subseteq E(K_1)} x^{\rho(K_1) - \rho(K_1; S)} y^{\gamma(K_1; S)}
\]

\[
= \sum_{S \subseteq \emptyset} x^{\rho(K_1)} y^{\gamma(K_1)}
\]

\[
= x^{\rho(K_1)} y^{\gamma(K_1)}
\]

\[= 1,
\]

and

\[
D_F(K_1; x, y) = \sum_T x^{\text{in}(T,G)} y^{\text{ex}(T,G)}
\]

\[= x^{\text{in}(K_1,K_1)} y^{\text{ex}(K_1,K_1)}
\]

\[= 1.
\]

Hence, \(D_F(K_1; x, y) = R(K_1; x - 1, y - 1)\). A simple induction now establishes \(D_F(G; x, y) = R(G; x - 1, y - 1)\).

Note that \(R(G; x - 1, y - 1)\) does not depend on the order \(F\). Hence, \(D_F(G; x, y)\) does not depend on the order \(F\), and we can now write \(D(G; x, y) = D_F(G; x, y)\). The polynomial \(D(G; x, y)\) is usually called the Tutte polynomial. (My professor [WTT] called it the dichromate.)

Since, \(D(G; x, y) = R(G; x - 1, y - 1)\), for a connected graph \(G\), we could extend our definition of \(D(G; x, y)\) to disconnected graphs in the obvious fashion.

Evaluations of the Tutte polynomial

Obviously, if \(G\) is a connected graph, then \(\tau(G) = D(G; 1, 1)\) is the number of spanning trees of \(G\). If \(G\) is not connected, then \(D(G; 1, 1)\) is the number of spanning forests of \(G\).

The chromatic polynomial \(P(G, \lambda)\) satisfies the recurrence \(P(G, \lambda) = P(G - e, \lambda) - P(G_e, \lambda)\). Hence, \(P(G, \lambda) = (-1)^{v(G)} \lambda D(G; 1 - \lambda, 0)\), for a connected graph \(G\). To check, assume that \(e \in E(G)\) and \(e\) is neither a loop nor a coloop. If we proceed by induction, then

\[
P(G, \lambda) = P(G - e, \lambda) - P(G_e, \lambda)
\]

\[= (-1)^{v(G-e)} \lambda D(G - e; 1 - \lambda, 0) - (-1)^{v(G_e)} \lambda D(G_e; 1 - \lambda, 0)
\]

\[= (-1)^{v(G)} \lambda D(G - e; 1 - \lambda, 0) + \lambda D(G_e; 1 - \lambda, 0)
\]

\[= (-1)^{v(G)} \lambda D(G; 1 - \lambda, 0),
\]
as needed.

If e is a loop, then $G - e = G_e$, and $D(G - e; 1 - \lambda, 0) = D(G_e; 1 - \lambda, 0)$, which yields the expected $P(G, \lambda) = 0$.

Finally, if every edge of G is a coloop and G has no loops, then $P(G, \lambda) = \lambda(\lambda - 1)^{v(G) - 1}$. Also, every $S \subseteq E(G)$ has $\rho(G : S) = |S|$, $\rho(G) - \rho(G : S) = (v(G) - 1) - |S|$, and $\gamma(G : S) = 0$. Thus,

$$R(G, x, y) = \sum_{S \subseteq E(G)} x^{\rho(G) - \rho(G : S)} y^{\gamma(G : S)}$$

$$= \sum_{S \subseteq E(G)} x^{v(G) - 1 - |S|}$$

$$= \sum_{k=0}^{v(G) - 1} \sum_{S \subseteq E(G)} x^{v(G) - 1 - |S|}$$

$$= \sum_{k=0}^{v(G) - 1} \binom{\rho(G)}{k} x^{v(G) - 1 - k}$$

$$= (1 + x)^{v(G) - 1}.$$

Then, $D(G; x, y) = x^{v(G) - 1}$ and

$$(-1)^{v(G) - 1} \lambda D(G; 1 - \lambda, 0) = (-1)^{v(G) - 1} \lambda (1 - \lambda)^{v(G) - 1} = \lambda (1 - \lambda)^{v(G) - 1},$$

as needed.

Another special case: $D(G; 2, 2) = R(G; 1, 1) = 2^{|E(G)|}$.

The flow polynomial is $(-1)^{e(G) - v(G) + 1} D(G, 0, 1 - u)$.
