GROUPS WITH FEW ISOMORPHISM TYPES OF DERIVED SUBGROUPS

MERCEDE MAJ

Dipartimento di Matematica, Università di Salerno
via Ponte don Melillo, 84084 Fisciano (Salerno), Italy

By a derived subgroup in a group G is meant the commutator subgroup H' of a subgroup H of G. We define $C(G)$ to be the set of derived subgroups in the group G.

We are interested in the questions how important is the subset $C(G)$ in the lattice $S(G)$ of all subgroups of G, and what are the consequences for the structure of G if conditions are imposed on the set $C(G)$. For example groups with $C(G)$ finite have been studied in 1 and 3.

We denote by D_n the class of groups in which the number of the isomorphism types of derived subgroup is at most n and we write $D = \bigcup_{n \in \mathbb{N}} D_n$.

In this talk we give some general results about the classes D_n and D. Then we focus our attention on the class D_2. We describe in a precise way some large classes of D_2-groups. We obtain a complete description of finite D_2-groups, the solution leads an interesting number theoretic problem. In addition we obtain detailed information about soluble groups in D_2, especially those of finite rank, where algebraic number fields play an important role.

Finally we study finite D_3-groups and we give a complete description in the nilpotent case.

REFERENCES